Preferred Language
Articles
/
joe-2041
Experimental Study for Materials Prosthetic above Knee Socket under Tensile or Fatigue Stress with Varying Temperatures Effect
...Show More Authors

The residual limb within the prosthesis, is often subjected to tensile or fatigue stress with varying temperatures. The fatigue stress and temperatures difference which faced by amputee during his daily activities will produces an environmental media for growth of fungi and bacteria in addition to the damage that occurs in the prosthesis which minimizingthe life of the prosthetic limb and causing disconfirm feeling for the amputee.

In this paper, a mechanical and thermal properties of composite materials prosthetic socket made of different lamination for perlon/fiber glass/perlon, are calculated by using tesile test device under varying temperatures ( from 20oC to 60oC), also in this paper a device for measuring rotational bending fatigue stress under varying temperatures was designed, manufactured, and calibrated ( this device is not available in Iraq), to achieve S – N curves for different lamination of perlon/fiber glass/perlon composite materials of prosthetic above knee socket.

In this paper, the mechanical and thermal properties set ( E, σy, σult, K, and α ) results of the above composite materials  are decreased when the temperatures are increased.

The S–N curves results of rotational bending fatigue for these lamination of composite materials are decreased when the temperatures are increased,also the endurance limit stresses (σe) are decreased with the increasing of number of perlon, and increasing temperatures, generaly after about 107 cycles.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Pulse Profile Rule in Laser Heating of Opaque Targets in Air
...Show More Authors

A theoretical model is developed to determine time evolution of temperature at the surface of an opaque target placed in air for cases characterized by the formation of laser supported absorption waves (LSAW) plasmas. The model takes into account the power temporal variation throughout an incident laser pulse, (i.e. pulse shape, or simply: pulse profile).
Three proposed profiles are employed and results are compared with the square pulse approximation of a constant power.

View Publication Preview PDF
Crossref