Preferred Language
Articles
/
joe-2041
Experimental Study for Materials Prosthetic above Knee Socket under Tensile or Fatigue Stress with Varying Temperatures Effect
...Show More Authors

The residual limb within the prosthesis, is often subjected to tensile or fatigue stress with varying temperatures. The fatigue stress and temperatures difference which faced by amputee during his daily activities will produces an environmental media for growth of fungi and bacteria in addition to the damage that occurs in the prosthesis which minimizingthe life of the prosthetic limb and causing disconfirm feeling for the amputee.

In this paper, a mechanical and thermal properties of composite materials prosthetic socket made of different lamination for perlon/fiber glass/perlon, are calculated by using tesile test device under varying temperatures ( from 20oC to 60oC), also in this paper a device for measuring rotational bending fatigue stress under varying temperatures was designed, manufactured, and calibrated ( this device is not available in Iraq), to achieve S – N curves for different lamination of perlon/fiber glass/perlon composite materials of prosthetic above knee socket.

In this paper, the mechanical and thermal properties set ( E, σy, σult, K, and α ) results of the above composite materials  are decreased when the temperatures are increased.

The S–N curves results of rotational bending fatigue for these lamination of composite materials are decreased when the temperatures are increased,also the endurance limit stresses (σe) are decreased with the increasing of number of perlon, and increasing temperatures, generaly after about 107 cycles.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 03 2014
Journal Name
Heat Transfer - Asian Research
CFD Simulation of Heat Transfer Augmentation in a Circular Tube fitted with Alternative Axis Twisted Tape in Laminar Flow under the Constant Heat Flux
...Show More Authors

Publication Date
Thu Jul 27 2023
Journal Name
Buildings
Structural Behavior of Reactive Powder Concrete under Harmonic Loading
...Show More Authors

Industrial buildings usually are designed to sustain several types of load systems, such as dead, live, and dynamic loads (especially the harmonic load produced by rotary motors). In general, these buildings require high-strength structural elements to carry the applied loads. Moreover, Reactive Powder Concrete (RPC) has been used for this purpose because of its excellent mechanical strength and endurance. Therefore, this study provides an experimental analysis of the structural behaviors of reinforced RPC beams under harmonic loads. The experimental program consisted of testing six simply supported RPC beams with lengths of 1500 mm, widths of 150 mm, and thicknesses of 200 mm under harmonic loading with varied frequencies between 1

... Show More
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Sep 07 2008
Journal Name
Baghdad Science Journal
Design of Immersion Electrostatic LensOperated under Zero Magnification Condition
...Show More Authors

The inverse problem is important method in the design of electrostatic lenses which is used in this work, with new technique by suggesting an axial electrostatic potential distribution using polynomial functions of the third order. The paraxial-ray equation is solved to obtain the trajectory of particles that satisfy the suggested potential function.In this work design of immersion electrostatic lens operated under zero magnification condition. The electrode shape of sthe electrostatic lens was the dermined from the solution of laplace equation and plotted in two deimensions . The results showed low values of spherical and chromatic aberrations , which are considered as good criteria for good desigh.

View Publication Preview PDF
Crossref
Publication Date
Sat Sep 01 2018
Journal Name
Al-nahrain Journal For Engineering Sciences
Performance Analysis of FSO under Turbulent Channel Using OSTBC
...Show More Authors

Free Space Optics (FSO) plays a vital role in modern wireless communications due to its advantages over fiber optics and RF techniques where a transmission of huge bandwidth and access to remote places become possible. The specific aim of this research is to analyze the Bit-Error Rate (BER) for FSO communication system when the signal is sent the over medium of turbulence channel, where the fading channel is described by the Gamma-Gamma model. The signal quality is improved by using Optical Space-Time Block- Code (OSTBC) and then the BER will be reduced. Optical 2×2 Alamouti scheme required 14 dB bit energy to noise ratio (Eb/N0) at 10-5 bit error rate (BER) which gives 3.5 dB gain as compared to no diversity scheme. Th

... Show More
View Publication
Crossref
Publication Date
Wed Mar 25 2020
Journal Name
2nd International Conference On Materials Engineering & Science (iconmeas 2019)
Foundation relative stiffness effects in sand under static loading
...Show More Authors

In the geotechnical engineering applications, precise understandings are yet to be established on the effects of a foundation stiffness on its bearing capacity and settlement. The modern foundation construction uses the new available construction materials that totally change the relative stiffness of the footing structures-soil interactions such as waste material and landfill area of more residential purposes. Conventional bearing capacity equations were dealt with common rigid footing and thus cannot be used for reduced foundation rigidity. Therefore, this study investigates the effects of foundation relative stiffness on its load-displacement behaviour and the soil deformation field using compression test of a strip smooth footings on su

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jul 27 2023
Journal Name
Buildings
Structural Behavior of Reactive Powder Concrete under Harmonic Loading
...Show More Authors

Industrial buildings usually are designed to sustain several types of load systems, such as dead, live, and dynamic loads (especially the harmonic load produced by rotary motors). In general, these buildings require high-strength structural elements to carry the applied loads. Moreover, Reactive Powder Concrete (RPC) has been used for this purpose because of its excellent mechanical strength and endurance. Therefore, this study provides an experimental analysis of the structural behaviors of reinforced RPC beams under harmonic loads. The experimental program consisted of testing six simply supported RPC beams with lengths of 1500 mm, widths of 150 mm, and thicknesses of 200 mm under harmonic loading with varied frequencies between 1

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Civil Engineering Journal
Dynamic Response of Historical Masonry Minaret under Seismic Excitation
...Show More Authors

In order to study the dynamic response of historical masonry structures, a scaled down brick masonry model constructed in civil engineering department at Baghdad University to simulate a part of a real case study, which is Alkifil historic minaret. Most of the previous researches about masonry structures try to understand the behavior of the masonry under seismic loading by experimental and numerical methods. In this paper, the masonry units (bricks) simulated in scale (S= 1/6) with the exact shape of the prototype bricks. Cementitious tile adhesive was selected to be the mortar for the modeling. The height of the model designed to be 1.5 m with a 0.5 m diameter. Detailed construction steps were presented in this paper. Experts buil

... Show More
View Publication
Crossref (7)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Finite Element Analysis of Raft Foundation under Coupled Moment
...Show More Authors

Due to wind wave actions, ships impacts, high-speed vehicles and others resources of loading, structures such as high buildings rise bridge and electric transmission towers undergo significant coupled moment loads. In this study, the effect of increasing the value of coupled moment and increasing the rigidity of raft footing on the horizontal deflection by using 3-D finite element using ABAQUS program. The results showed that the increasing the coupled moment value leads to an increase in lateral deflection and increase in the rotational angle (α◦). The rotational angle increases from (0.014, 0.15 to 0.19) at coupled moment (120 kN.m), (0.29, 0.31 and 0.49) at coupled moment (240 kN.m) and (0.57, 0.63 and 1.03) at cou

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Behavior of Partially Saturated Cohesive Soil under Strip Footing
...Show More Authors

In this paper, a shallow foundation (strip footing), 1 m in width is assumed to be constructed on fully saturated and partially saturated Iraqi soils, and analyzed by finite element method. A procedure is proposed to define the H – modulus function from the soil water characteristic curve which is measured by the filter paper method. Fitting methods are applied through the program (SoilVision). Then, the soil water characteristic curve is converted to relation correlating the void ratio and matric suction. The slope of the latter relation can be used to define the H – modulus function. The finite element programs SIGMA/W and SEEP/W are then used in the analysis. Eight nodded isoparametric quadrilateral elements are used for modeling

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Engineering
The Behavior of Gypseous Soil under Vertical Vibration Loading
...Show More Authors

The dynamic response of foundation rest on collapsible soil in dry and soaked states is studied through wide experimental programmed. Gypseous soil from Tikrit governorate area was obtained and subjected to various physical and chemical analysis to determine its properties. Steel rectangular footing (400x200x20) mm is manufactured. The machine is fitted to the footing, then the model machine foundation is placed centrally over the prepared soil layer in steel container (1200x 1000x1000)mm with proper care to maintain the center of gravity of whole system lie in the same vertical line with container.Then, the footing is subjected to vertical harmonic loading using a rotating mass type mechanical oscillator to simulate different dynamic lo

... Show More
View Publication Preview PDF
Crossref (2)
Crossref