Preferred Language
Articles
/
joe-2025
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor the removal of brain sections can be addressed in the subsequent steps, resulting in an unfixed mistake during further analysis. Therefore, accurate skull stripping is necessary for neuroimaging diagnostic systems. This paper proposes a system based on deep learning and Image processing, an innovative method for converting a pre-trained model into another type of pre-trainer using pre-processing operations and the CLAHE filter as a critical phase. The global IBSR data set was used as a test and training set. For the system's efficacy, work was performed based on the principle of three dimensions and three sections of MR images and two-dimensional images, and the results were 99.9% accurate.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Oct 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Spatial Regression Models Estimation for the poverty Rates In the districts of Iraq in 2012
...Show More Authors

The research took the spatial autoregressive model: SAR and spatial error model: SEM  in an attempt to provide practical evidence that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial and that includes all of the spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. The spatial analysis had been applied to Iraq Household Socio-Economic Survey: IHS

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Analysis of Models (NAGARCH & APGARCH) by Using Simulations
...Show More Authors

Simulation experiments are a means of solving in many fields, and it is the process of designing a model of the real system in order to follow it and identify its behavior through certain models and formulas written according to a repeating software style with a number of iterations. The aim of this study is to build a model  that deals with the behavior suffering from the state of (heteroskedasticity) by studying the models (APGARCH & NAGARCH) using (Gaussian) and (Non-Gaussian) distributions for different sample sizes (500,1000,1500,2000) through the stage of time series analysis (identification , estimation, diagnostic checking and prediction). The data was generated using the estimations of the parameters resulting f

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
Hybrid vs Ensemble Classification Models for Phishing Websites
...Show More Authors

Phishing is an internet crime achieved by imitating a legitimate website of a host in order to steal confidential information. Many researchers have developed phishing classification models that are limited in real-time and computational efficiency.  This paper presents an ensemble learning model composed of DTree and NBayes, by STACKING method, with DTree as base learner. The aim is to combine the advantages of simplicity and effectiveness of DTree with the lower complexity time of NBayes. The models were integrated and appraised independently for data training and the probabilities of each class were averaged by their accuracy on the trained data through testing process. The present results of the empirical study on phishing websi

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Crossref
Publication Date
Tue Dec 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Using Artificial Neural Network Models For Forecasting & Comparison
...Show More Authors

The Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Int. J. Nonlinear Anal. Appl.
Analysis of a harvested discrete-time biological models
...Show More Authors

This work aims to analyze a three-dimensional discrete-time biological system, a prey-predator model with a constant harvesting amount. The stage structure lies in the predator species. This analysis is done by finding all possible equilibria and investigating their stability. In order to get an optimal harvesting strategy, we suppose that harvesting is to be a non-constant rate. Finally, numerical simulations are given to confirm the outcome of mathematical analysis.

Scopus (6)
Scopus
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Time Series Forecasting by Using Box-Jenkins Models
...Show More Authors

    In this paper we introduce a brief review about Box-Jenkins models. The acronym ARIMA stands for “autoregressive integrated moving average”. It is a good method to forecast for stationary and non stationary time series. According to the data which obtained from Baghdad Water Authority, we are modelling two series, the first one about pure water consumption and the second about the number of participants. Then we determine an optimal model by depending on choosing minimum MSE as criterion.

View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Human Face Recognition Based on Local Ternary Pattern and Singular Value Decomposition
...Show More Authors

There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Partial Cryptography in Digital Media Environment Based on ECC Algebra
...Show More Authors

In recent years, Elliptic Curve Cryptography (ECC) has attracted the attention of
researchers and product developers due to its robust mathematical structure and
highest security compared to other existing algorithms like RSA. It is found to give
an increased security compared to RSA for the same key-size or same security as
RSA with less key size. In this paper a new approach is proposed for encrypting
digital image using the arithmetic of elliptic curve algebra. The proposed approach
produced a new mask for encrypt the digital image by use a new convolution
processes based on ECC algebra operations and work as symmetric cryptographic
system instead of asymmetric system. A new approach combined both compression

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Glaucoma Diagnosis Based on Retinal Fundus Image: A Review
...Show More Authors

    Glaucoma is one of the most dangerous eye diseases. It occurs as a result of an imbalance in the drainage and flow of the retinal fluid. Consequently, intraocular pressure is generated, which is a significant risk factor for glaucoma. Intraocular pressure causes progressive damage to the optic nerve head, thus leading to vision loss in the advanced stages. Glaucoma does not give any signs of disease in the early stages, so it is called "the Silent Thief of Sight". Therefore, early diagnosis and treatment of retinal eye disease is extremely important to prevent vision loss. Many articles aim to analyze fundus retinal images and diagnose glaucoma. This review can be used as a guideline to help diagnose glaucoma. It presents 63 artic

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (6)
Scopus Crossref