In this work a study was made in centrifugal fan blower to investigate the effect of impeller blade design on sound pressure level (SPL). Shroud and unshroud impeller of nine blades are used. The sound generation from flow inside the test rig at different positions was displayed by using spectral analyzer. The experiments were carried out in anechoic chamber with small holes in its walls, under ambient condition about (25-27) C ° to avoid the effect of temperature on the sound pressure level. The results showed that (SPL) decreased with the increase of distance from the source about (3-4)dB when distance varied about (0.8-1.06)m, and the (SPL) decreased with the decrease of velocity about (8-12)dB when velocity varied between (13000-2600) r.p.m., and when the velocity remain constant (SPL) increased with the increased of pressure about (7-15)dB when the pressure varied between (36-8)mbar. For the purpose of comparison, two types of impellers were tested under same conditions, the results showed that (SPL) increased when shroud used on the impeller. The mathematical results show good agreement with the experimental results. The study also concluded a spectral analysis of the noise generated using 1/3 octave band filter. The analysis showed that (SPL) increased with frequency range of (0.8-400) Hz. The maximum sound pressure level was appeared clearly in the frequency range between 200 – 400 Hz .
This paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis
... Show MoreErratum for Organic acid concentration thresholds for ageing of carbonate minerals: Implications for CO2 trapping/storage.
The title compound was synthesized by 2:1 condensation between adamantan-1-ylamine and benzene-1,4- dicarbaldehyde in n-BuOH and produced a good yield 87% of new bis Schiff base. The compound skeleton was affirmed by FTIR, 1H NMR, LC-MS, and X-ray powder diffraction. The structure was solved by a parallel tempering process and refined by using Rietveld refinement. Two adamantan-1-ylimino groups are connected in the anti-positions to the planar central 1,4-dimethylbenzene group. All rings of the adamantyl group possess normal chair conformation.
This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO
... Show MoreNowadays, most of the on-chip plasmonic single-photon sources emit an unpolarized stream of single photons that demand a subsequent polarizer stage in a practical quantum cryptography system. In this paper, we numerically demonstrated the coupling of the light emitted from a quantum emitter (QE) at 700 nm wavelength to the propagation mode supported by an on-chip hybrid plasmonic waveguide (HPW) polarization rotator. Our results proved that the light emitted is linearly polarized at 0º, 45º/−45º, and 90º with propagation lengths of 5 μm, 3.3 μm, and 3.9 μm, respectively. Moreover, high power-conversion efficiency was obtained from an applied transverse magnetic (TM) mode (0º-polarization) to a transverse electric (TE) (90º-polari
... Show MoreThe present study aimed to use the magnetic field and nanotechnology in the field of water purification, which slots offering high efficiency to the possibility of removing biological contaminants such as viruses and bacteria rather than the use of chemical and physical transactions such as chlorine and bromine, and ultraviolet light and boiling and sedimentation and distillation, ozone and others that have a direct negative impact on human safety and the environment. Where they were investigating the presence in water samples under study Coli phages using Single agar layer method and then treated samples positive for phages to three types of magnetic field fixed as follows (North Pole - South Pole - Bipolar) and compare the re
... Show More