The problem of frequency estimation of a single sinusoid observed in colored noise is addressed. Our estimator is based on the operation of the sinusoidal digital phase-locked loop (SDPLL) which carries the frequency information in its phase error after the noisy sinusoid has been acquired by the SDPLL. We show by computer simulations that this frequency estimator beats the Cramer-Rao bound (CRB) on the frequency error variance for moderate and high SNRs when the colored noise has a general low-pass filtered (LPF) characteristic, thereby outperforming, in terms of frequency error variance, several existing techniques some of which are, in addition, computationally demanding. Moreover, the present approach generalizes on existing work that addresses different methods of sinusoid frequency estimation involving
specific colored noise models such as the moving average (MA) noise model. An insightful theoretical analysis is presented to support the practical findings.
The present study aims to identify the most and the least common teaching practices among faculty members in Northern Border University according to brain-based learning theory, as well as to identify the effect of sex, qualifications, faculty type, and years of experiences in teaching practices. The study sample consisted of (199) participants divided into 100 males and 99 females. The study results revealed that the most teaching practice among the study sample was ‘I am trying to create an Environment of encouragement and support within the classroom which found to be (4.4623). As for the least teaching practice was ‘I use a natural musical sounds to create student's mood to learn’ found to be (2.2965). The study results also in
... Show MoreA simple and rapid high performance liquid chromatographic with fluorescence detection method for the determination of the aflatoxin B1, B2, G1 and G2 in peanuts, rice and chilli was developed. The sample was extracted using acetonitrile:water (90:10, v/v%) and then purified by using ISOLUTE multimode solid phase extraction. After the pre-column derivatisation, the analytes were separated within 3.7 min using Chromolith performance RP-18e (100–4.6 mm) monolithic column. To assess the possible effects of endogenous components in the food items, matrix-matched calibration was used for the quantification and validation. The recoveries of aflatoxins that were spiked into food samples were 86.38–104.5% and RSDs were <4.4%. The method was
... Show MoreThe pilgrimage takes place in several countries around the world. The pilgrimage includes the simultaneous movement of a huge crowd of pilgrims which leads to many challenges for the pilgrimage authorities to track, monitor, and manage the crowd to minimize the chance of overcrowding’s accidents. Therefore, there is a need for an efficient monitoring and tracking system for pilgrims. This paper proposes powerful pilgrims tracking and monitoring system based on three Internet of Things (IoT) technologies; namely: Radio Frequency Identification (RFID), ZigBee, and Internet Protocol version 6 (IPv6). In addition, it requires low-cost, low-power-consumption implementation. The proposed
Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreSkull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor
... Show More