Computations of the relative permeability curves were made through their representation by two functions for wetting and nonwetting phases. Each function contains one parameter that controls the shape of the relative permeability curves. The values of these parameters are chosen to minimize an objective function, that is represented as a weighted sum of the squared differences between experimentally measured data and the corresponding data calculated by a mathematical model simulating the experiment. These data comprise the pressure drop across core samples and the recovery response of the displacing phase. Two mathematical models are constructed in this study to simulate incompressible, one-dimensional, two-phase flow. The first model describes the imbibition process and the other describes the drainage process. The values of the relative permeability parameters are calculated by employing Rosenbrock optimization procedure. The reliability of this procedure has been confirmed by applying it to four displacement cases. The optimum values of the relative permeability parameters, which reflect the final shape of the relative permeability curves, are achieved at the minimum value of the objective function. All the above processes are be embodied in relative permeability package RPP which is constructed in this study using FORTRAN language.
Unconfined Compressive Strength is considered the most important parameter of rock strength properties affecting the rock failure criteria. Various research have developed rock strength for specific lithology to estimate high-accuracy value without a core. Previous analyses did not account for the formation's numerous lithologies and interbedded layers. The main aim of the present study is to select the suitable correlation to predict the UCS for hole depth of formation without separating the lithology. Furthermore, the second aim is to detect an adequate input parameter among set wireline to determine the UCS by using data of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud, Nahr Um
... Show MoreBackground: Anterior disc displacement with reduction (ADDWR) is the most common form of the internal derangement (ID) of temporomandibular joint (TMJ). It is a painful progressive dysfunction and clinically characterized by reciprocal clicking due to shift in the disc anteriorly in relation to the condyle and fossa during mandible elevation. Minimally invasive therapy such as intra-articular injection of platelet-rich plasma (PRP) has been used. PRP is a natural autologous product with a high platelet concentration obtained by centrifugation process to enhance tissue healing through several growth factors (GFs), which are released after endogenous activation. The aim of this study is to assess this technique which is increasingly used toda
... Show MoreThis paper presents L1-adaptive controller for controlling uncertain parameters and time-varying unknown parameters to control the position of a DC servomotor. For the purpose of comparison, the effectiveness of L1-adaptive controller for position control of studied servomotor has been examined and compared with another adaptive controller; Model Reference Adaptive Controller (MRAC). Robustness of both L1-adaptive controller and model reference adaptive controller to different input reference signals and different structures of uncertainty were studied. Three different types of input signals are taken into account; ramp, step and sinusoidal. The L1-adaptive controller ensured uniformly bounded
... Show MoreRoof in the Iraqi houses normally flattening by a concrete panel. This concrete panel has poor thermal properties. The usage of materials with low thermal conductivity and high specific heat gives a good improvements to the thermal properties of the concrete panel, thus, the indoor room temperature improves. A Mathcad program based on a mathematical model employing complex Fourier series built for a single room building. The model input data are the ambient temperature, solar radiation, and sol-air temperature, which have been treated as a periodic function of time. While, the room construction is constant due to their materials made of it, except the roof properties are taken as a variable generated practically from the
... Show MoreThe Adaptive Optics technique has been developed to obtain the correction of atmospheric seeing. The purpose of this study is to use the MATLAB program to investigate the performance of an AO system with the most recent AO simulation tools, Objected-Oriented Matlab Adaptive Optics (OOMAO). This was achieved by studying the variables that impact image quality correction, such as observation wavelength bands, atmospheric parameters, telescope parameters, deformable mirror parameters, wavefront sensor parameters, and noise parameters. The results presented a detailed analysis of the factors that influence the image correction process as well as the impact of the AO components on that process
In this study, the hydromorphodynamic simulation of a stretch of the Euphrates River was conducted. The stretch of the Euphrates River extended from Haditha dam to the city of Heet in Al-Anbar Governorate and it is estimated to be 124.4 km. Samples were taken from 3 sites along the banks of the river stretch using sampling equipment. The samples were taken to the laboratory for grain size analysis where the median size (D50) and sediment load were determined. The hydromorphodynamic simulation was conducted using the NACY 2DH solver of the iRIC model. The model was calibration using the Manning roughness, sediment load, and median particle size and the validation process showed that the error between th
... Show MoreThe aim of our study is to solve a nonlinear epidemic model, which is the COVID-19 epidemic model in Iraq, through the application of initial value problems in the current study. The model has been presented as a system of ordinary differential equations that has parameters that change with time. Two numerical simulation methods are proposed to solve this model as suitable methods for solving systems whose coefficients change over time. These methods are the Mean Monte Carlo Runge-Kutta method (MMC_RK) and the Mean Latin Hypercube Runge-Kutta method (MLH_RK). The results of numerical simulation methods are compared with the results of the numerical Runge-Kutta 4th order method (RK4) from 2021 to 2025 using the absolute error, which prove
... Show MoreThe present work concerns with simulating unsteady state equilibrium model for production of methyl oleate (biodiesel) from reaction of oleic acid with methanol using sulfuric acid as a catalyst in batch reactive distillation. MESHR equations of equilibrium model were solved using MATLAB (R2010a). The validity of simulation model was tested by comparing the simulation results with a data available in literature. UNIQUAC liquid phase activity coefficient model is the most appropriate model to describe the non-ideality of OLAC-MEOH-MEOL-H2O system. The chemical reactions rates results from EQ model indicating the rates are controlled by chemical kinetics. Several variables was studied such as molar ratio of methanol to oleic acid 4:1, 6:1
... Show MoreThe aim of this study is to design a proposed model for a document to insure the mistakes of the medical profession in estimating the compensation for medical errors. The medical profession is an honest profession aimed primarily at serving human and human beings. In this case, the doctor may be subject to error and error , And the research has adopted the descriptive approach and the research reached several conclusions, the most prominent of which is no one to bear the responsibility of medical error, although the responsibility shared and the doctor contributes to them, doctors do not deal with patients according to their educational level and cultural and there are some doctors do not inform patients The absence of a document to insu
... Show More