Computations of the relative permeability curves were made through their representation by two functions for wetting and nonwetting phases. Each function contains one parameter that controls the shape of the relative permeability curves. The values of these parameters are chosen to minimize an objective function, that is represented as a weighted sum of the squared differences between experimentally measured data and the corresponding data calculated by a mathematical model simulating the experiment. These data comprise the pressure drop across core samples and the recovery response of the displacing phase. Two mathematical models are constructed in this study to simulate incompressible, one-dimensional, two-phase flow. The first model describes the imbibition process and the other describes the drainage process. The values of the relative permeability parameters are calculated by employing Rosenbrock optimization procedure. The reliability of this procedure has been confirmed by applying it to four displacement cases. The optimum values of the relative permeability parameters, which reflect the final shape of the relative permeability curves, are achieved at the minimum value of the objective function. All the above processes are be embodied in relative permeability package RPP which is constructed in this study using FORTRAN language.
The heterogeneity nature of carbonate reservoirs shows sever scattering of the data, therefore, one has to be cautious in using the permeability- porosity correlation for calculating permeability unless a good correlation coefficient is available. In addition, a permeability- porosity correlation technique is not enough by itself since simulation studies also require more accurate tools for reservoir description and diagnosis of flow and non-flow units.
Evaluation of reservoir characterization was conducted by this paper for Mishrif Formation in south Iraqi oil field (heterogeneous carbonate reservoir), namely the permeability-porosity correlation, the hydraulic units (HU’s) an
... Show MoreThe heterogeneity nature of carbonate reservoirs shows sever scattering of the data, therefore, one has to be cautious in using the permeability- porosity correlation for calculating permeability unless a good correlation coefficient is available. In addition, a permeability- porosity correlation technique is not enough by itself since simulation studies also require more accurate tools for reservoir description and diagnosis of flow and non-flow units. Evaluation of reservoir characterization was conducted by this paper for Mishrif Formation in south Iraqi oil field (heterogeneous carbonate reservoir), namely the permeability-porosity correlation, the hydraulic units (HU’s) and global hydraulic elements (GHE
... Show MorePermeability is one of the essential petrophysical properties of rocks, reflecting the rock's ability to pass fluids. It is considered the basis for building any model to predict well deliverability. Yamama formation carbonate rocks are distinguished by sedimentary cycles that separate formation into reservoir units and insulating layers, a very complex porous system caused by secondary porosity due to substitute and dissolution processes. Those factors create permeability variables and vary significantly. Three ways used for permeability calculation, the firstly was the classical method, which only related the permeability to the porosity, resulting in a weak relationship. Secondly, the flow zone indicator (FZI) was divided reservoir into
... Show MoreThe influence of sensing element length of no-core fiber strain sensor has been studied and experimentally demonstrated, four different lengths of 125 μm diameter no-core fiber is fused between two standard single-mode fibers and bi-directionally strained, the highest obtained sensitivity was around 16.37 pm με -1 which was exhibited in the shortest no-core fiber segment, to the best of our knowledge this is the first study of the influence of no-core fiber strain sensors length on sensor sensitivity. The proposed sensor can be used in many opto-mechanical applications such as, structural health monitoring, aerospace vehicles and airplane components monitoring.
This paper compares between the direct and indirect georeferencing techniques in Photogrammetry bases on a simulation model. A flight plan is designed which consists of three strips with nine overlapped images for each strip by a (Canon 500D) digital camera with a resolution of 15 Mega Pixels.
The triangulation computations are carried out by using (ERDAS LPS) software, and the direct measurements are taken directly on the simulated model to substitute using GPS/INS in real case. Two computational tests have been implemented to evaluate the positional accuracy for the whole model and the Root Mean Square Error (RMSE) relating to (30) check points show that th
... Show MoreB Saleem, H Alwan, L Khalid, Journal of Engineering, 2011 - Cited by 2
Bacteria could produce bacterial nanocellulose through a procedure steps: polymerization and crystallization, that occur in the cytoplasm of the bacteria, the residues of glucose polymerize to (β-1,4) lineal glucan chains that produced from bacterial cell extracellularly, these lineal glucan are converted to microfbrils, after that these microfbrils collected together to shape very pure three dimensional pored net. It could be obtained a pure cellulose that created by some M.O, from the one of the active producer organism like Acetic acid bacteria (AAB), that it is a gram -ve, motile and live in aerobic condition. The bacterial nanocellulose (BNC) have great consideration in many fields because of its flexible properties, features
... Show More
This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.
The main objective of this paper is to determine an acceptable value of eccentricity for the satellites in a Low Earth Orbit LEO that are affected by drag perturbation only. The method of converting the orbital elements into state vectors was presented. Perturbed equation of motion was numerically integrated using 4th order Runge-Kutta’s method and the perturbation in orbital elements for different altitudes and eccentricities were tested and analysed during 84.23 days. The results indicated to the value of semi major axis and eccentricity at altitude 200 km and eccentricity 0.001are more stable. As well, at altitude 600 km and eccentricity 0.01, but at 800 km a