A genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil was considered homogeneous anisotropic. For each case, the length of protection (L) and the volume of the superstructure (V) required to satisfy the factors of safety mentioned above were calculated. These data were used to obtain an artificial neural network model for estimating (L) and (V) for a given length of upstream cutoff (S1), length of downstream cutoff (S2), head difference (H), length of floor (B), depth of impervious layer (D) and degree of anisotropy (kx/ky).
A MatLAB code was written to perform a genetic algorithm optimization modeling using the obtained ANN model .The obtained optimum solution for some selected cases were compared with the Geo-studio modeling to find the length of protection required in the downstream side and volume required for superstructure. Values estimated were found comparable to the obtained values from the Genetic Algorithm model.
This paper introduces some properties of separation axioms called α -feeble regular and α -feeble normal spaces (which are weaker than the usual axioms) by using elements of graph which are the essential parts of our α -topological spaces that we study them. Also, it presents some dependent concepts and studies their properties and some relationships between them.
Companies seek to enhance investor confidence by achieving the highest level of transparency in disclosure of financial and non-financial information (SASB standards) for Iraqi insurance companies listed on the financial market. The aim of the research is to identify the extent of the ability of financial and non-financial information to enhance transparency in reporting, which is reflected in Investor confidence. And the standards of sustainability development accounting issued by (SASB) through the electronic questionnaire that was distributed. Companies seek to achieve a set of goals, the most important of which is to enhance investor confidence by improving transparency in disclosure. Concerning the employment of financial an
... Show MoreAbstract: Facial defects resulting from neoplasms, congenital, acquired malformations or trauma can be restored with facial prosthesis using different materials and retention methods to achieve life-like look and function. A nasal prosthesis can re-establish aesthetic form and anatomic contours for mid-facial defects, often more effectively than by surgical reconstruction as the nose is relatively immobile structure. For successful results, lot of factors such as harmony, texture, color matching and blending of tissue interface with the prosthesis are important. The aim of this study is to describe the non-surgical rehabilitation with nasal prosthesis for an Iraqi patient who received rhinectomy as a result of squamous cell carcinoma of the
... Show MoreTwo unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
Segmentation is the process of partition digital images into different parts depending on texture, color, or intensity, and can be used in different fields in order to segment and isolate the area to be partitioned. In this work images of the Moon obtained through observations in Astronomy and space dep. College of science university of Baghdad by ( Toward space telescopes and widespread used of a CCD camera) . Different segmentation methods were used to segment lunar craters. Different celestial objects cause craters when they crash into the surface of the Moon like asteroids and meteorites. Thousands of craters appears on the Moon's surface with ranges in size from meter to many kilometers, it provide insights into the age and ge
... Show More