Preferred Language
Articles
/
joe-1981
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer learning, a powerful deep learning technique that can be effectively employed to Face gender classification using the Alex-Net architecture. The performance evaluation of the proposed gender classification model encompassed three datasets: the LFW dataset, which contained 1,200 facial images. The Faces94 dataset contained 400 facial images, and the family dataset had 400. The Transfer Learning with the Alex-Net model achieved an accuracy of 98.77% on the LFW dataset.

Furthermore, the model attained an accuracy rate of 100% on both the Faces94 and family datasets. Thus, the proposed system emphasizes the significance of employing pre-processing techniques and transfer learning with the Alex-Net model. These methods contribute to more accurate results in gender classification. Where, the results achieved by applying image contrast enhancement techniques, such as HE and CLAHE, were compared. CLAHE achieved the best facial classification accuracy compared to HE.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Feb 01 2025
Journal Name
Civil Engineering Journal
On the Impact of Lacing Reinforcement Arrangement on Reinforced Concrete Deep Beams Performance
...Show More Authors

The optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Petroleum Research And Studies
Stress Ratio Method to Predict Fracture Pressure Gradient in Southern Iraqi Deep Wells
...Show More Authors

This research presents a method for calculating stress ratio to predict fracture pressure gradient. It also, describes a correlation and list ideas about this correlation. Using the data collected from four wells, which are the deepest in southern Iraqi oil fields (3000 to 6000) m and belonged to four oil fields. These wells are passing through the following formations: Y, Su, G, N, Sa, Al, M, Ad, and B. A correlation method was applied to calculate fracture pressure gradient immediately in terms of both overburden and pore pressure gradient with an accurate results. Based on the results of our previous research , the data were used to calculate and plot the effective stresses. Many equations relating horizontal effective stress and vertica

... Show More
Publication Date
Fri Aug 12 2022
Journal Name
Future Internet
Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder
...Show More Authors

Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr

... Show More
View Publication Preview PDF
Scopus (29)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Mon Sep 30 2024
Journal Name
Medical Journal Of Babylon
Effectiveness of Deep Breathing Technique on Pain Level of School Children during Catheterization
...Show More Authors

Scopus (1)
Scopus
Publication Date
Mon Feb 14 2022
Journal Name
Journal Of Educational And Psychological Researches
Social Skills and its Relationship with Self-Regulation of Gifted Students According to the academic Stage and Gender
...Show More Authors

This study aimed at investigating the level of social skills and its relationship with self-regulation among gifted students according to the academic stage and gender. The sample consisted of (417) male and female students at King Abdullah II School for Excellence in Salt, Jordan. Two instruments were used to collect the data; A scale of social skills and a scale of self-regulation. The results revealed that the level of social skills was high among gifted students. There were statistically significant differences in the social skills among gifted students according to their academic stage in favor of the secondary stage and according to their gender in favor of female students. There were statistically signific

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 12 2019
Journal Name
Journal Of Global Pharma Technology
Age Gender and Site Effect on Immunohistochemical Expression of TGF-β1 and IFN-γ in Hereditary Gingival Fibromatosis
...Show More Authors

Publication Date
Mon Mar 13 2017
Journal Name
Journal Of Baghdad College Of Dentistry
Dental Caries Experience and Salivary Elements Among A Group of Young Adults In Relation to Age and Gender
...Show More Authors

ABSTRACT Background: Dental caries is a most common social and intractable infectious disease in human. Saliva is critical for preserving and maintaining oral health and salivary elements had many effects on caries experience. Aim of study: This study was conducted to assess dental caries severity by age and gender and their relation to salivary zinc and copper among a group of adults aged (19-22) years. Materials and methods: After examination eighty persons aged 19-22 years of both gender. Caries severity was documented according to DMFS index. Stimulated salivary samples were collected and chemically analyzed under standardized condition to detect salivary elements zinc and copper. Concentrations of Zinc and copper were measured by using

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Egyptian Journal Of Medical Human Genetics
Association between ABO blood groups and susceptibility to COVID-19: profile of age and gender in Iraqi patients
...Show More Authors
Abstract<sec> <title>Background

A case-control study was performed to examine age, gender, and ABO blood groups in 1014 Iraqi hospitalized cases with Coronavirus disease 2019 (COVID-19) and 901 blood donors (control group). The infection was molecularly diagnosed by detecting coronavirus RNA in nasal swabs of patients.

Results

Mean age was significantly elevated in cases compared to controls (48.2 ± 13.8 vs. 29.9 ± 9.0 year; probability [p] < 0.001). Receiver operating characteristic anal

... Show More
View Publication
Scopus (22)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jul 13 2023
Journal Name
International Journal Of Research In Social Sciences &amp; Humanities
Subject Review: Blogs as Learning Tools in EFL Classrooms
...Show More Authors

Blogs have emerged as a powerful technology tool for English as a Foreign Language (EFL) classrooms. This literature review aims to provide an overview of the use of blogs as learning tools in EFL classrooms. The study examines the benefits and challenges of using blogs for language learning and the different types of blogs that can be used for language learning. It provides suggestions for teachers interested in using blogs as learning tools in their EFL classrooms. The findings suggest that blogs are a valuable and effective tool for language learning, particularly in promoting collaboration, communication, and motivation.

View Publication Preview PDF
Crossref