Preferred Language
Articles
/
joe-1981
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer learning, a powerful deep learning technique that can be effectively employed to Face gender classification using the Alex-Net architecture. The performance evaluation of the proposed gender classification model encompassed three datasets: the LFW dataset, which contained 1,200 facial images. The Faces94 dataset contained 400 facial images, and the family dataset had 400. The Transfer Learning with the Alex-Net model achieved an accuracy of 98.77% on the LFW dataset.

Furthermore, the model attained an accuracy rate of 100% on both the Faces94 and family datasets. Thus, the proposed system emphasizes the significance of employing pre-processing techniques and transfer learning with the Alex-Net model. These methods contribute to more accurate results in gender classification. Where, the results achieved by applying image contrast enhancement techniques, such as HE and CLAHE, were compared. CLAHE achieved the best facial classification accuracy compared to HE.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 24 2017
Journal Name
Spe Kingdom Of Saudi Arabia Annual Technical Symposium And Exhibition
Optimization of Infill Drilling in Whicher Range Field in Australia
...Show More Authors
Abstract<p>Now that most of the conventional reservoirs are being depleted at a rapid pace, the focus is on unconventional reservoirs like tight gas reservoirs. Due to the heterogeneous nature and low permeability of unconventional reservoirs, they require a huge number of wells to hit all the isolated hydrocarbon zones. Infill drilling is one of the most common and effective methods of increasing the recovery, by reducing the well spacing and increasing the sweep efficiency. However, the problem with drilling such a large number of wells is the determination of the optimum location for each well that ensures minimum interference between wells, and accelerates the recovery from the field. Detail</p> ... Show More
View Publication
Scopus (15)
Crossref (8)
Scopus Crossref