This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.
The virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The contr
In this paper a nonlinear adaptive control method is presented for a pH process, which is difficult to control due to the nonlinear and uncertainties. A theoretical and experimental investigation was conducted of the dynamic behavior of neutralization process in a continuous stirred tank reactor (CSTR). The process control was implemented using different control strategies, velocity form of PI control and nonlinear adaptive control. Through simulation studies it has been shown that the estimated parameters are in good agreement with the actual values and that the proposed adaptive controller has excellent tracking and regulation performance.
Flutter is a phenomenon resulting from the interaction between aerodynamic and structural dynamic forces and may lead to a destructive instability. The aerodynamic forces on an oscillating airfoil combination of two independent degrees of freedom have been determined. The problem resolves itself into the solution of certain definite integrals, which have been identified as Theodorsen functions. The theory, being based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing-ection theory relating to the steady case. The mechanism of aerodynamic instability has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been analyzed in detail. Th
... Show MoreA quadruped (four-legged) robot locomotion has the potential ability for using in different applications such as walking over soft and rough terrains and to grantee the mobility and flexibility. In general, quadruped robots have three main periodic gaits: creeping gait, running gait and galloping gait. The main problem of the quadruped robot during walking is the needing to be statically stable for slow gaits such as creeping gait. The statically stable walking as a condition depends on the stability margins that calculated particularly for this gait. In this paper, the creeping gait sequence analysis of each leg step during the swing and fixed phases has been carried out. The calculation of the minimum stability margins depends up
... Show MoreAbstract
This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m
... Show MoreDistribution of light intensity in the flat photobioreactor for microalgae cultivation as a step design for production of bio-renewable energy was addressed in the current study. Five sizes of bioreactors with specific distances from the main light source were adopted as independent variables in experiential design model. The results showed that the bioreactor’s location according to the light source, determines the nature of light intensity distribution in the reactor body. However, the cross-section area plays an important role in determining the suitable location of reactor to achieve required light homogeneity. This area could change even the expected response of the light passing through the reactor if Beer-Lambert's law is adopted.
... Show MoreIn the modern world, wind turbine (WT) has become the largest source of renewable energy. The horizontal-axis wind turbine (HAWT) has higher efficiency than the vertical-axis wind turbine (VAWT). The blade pitch angle (BPA) of WT is controlled to increase output power generation over the rated wind speed. This paper proposes an accurate controller for BPA in a 500-kw HAWT. Three types of controllers have been applied and compared to find the best controller: PID controller (PIDC), fuzzy logic type-2 controller (T2FLC), and hybrid type-2 fuzzy-PID controller (T2FPIDC). This paper has been used Mamdani and Sugeno fuzzy inference systems (FIS) to find the best inference system for WT controllers. Furthermore, genetic algorithm (GA) and particl
... Show MoreFree Piston Engine Linear Generator (FPELG) is a modern engine and promising power generation engine. It has many advantages compared to conventional engines such as less friction, few numbers of parts, and high thermal efficiency. The cycle-to-cycle variation one of the big challenges of the FPELG because it is influence on the stability and output power of the engine. Therefore, in this study, the effect of ignition time on combustion characteristics is investigated. The single-cylinder FPELG with spark ignition (SI) combustion type by using compressed natural gas (CNG) fuel type was set to run. LabVIEW is used to run the engine and control of input parameters. All experimental data
Fuzzy numbers are used in various fields such as fuzzy process methods, decision control theory, problems involving decision making, and systematic reasoning. Fuzzy systems, including fuzzy set theory. In this paper, pentagonal fuzzy variables (PFV) are used to formulate linear programming problems (LPP). Here, we will concentrate on an approach to addressing these issues that uses the simplex technique (SM). Linear programming problems (LPP) and linear programming problems (LPP) with pentagonal fuzzy numbers (PFN) are the two basic categories into which we divide these issues. The focus of this paper is to find the optimal solution (OS) for LPP with PFN on the objective function (OF) and right-hand side. New ranking f
... Show More