Preferred Language
Articles
/
joe-1971
Performance Assessment of Pile Models Chemically Grouted by Low-Pressure Injection Laboratory Device for Improving Loose Sand
...Show More Authors

The complexity and partially defined nature of jet grouting make it hard to predict the performance of grouted piles. So the trials of cement injection at a location with similar soil properties as the erecting site are necessary to assess the performance of the grouted piles. Nevertheless, instead of executing trial-injected piles at the pilot site, which wastes money, time, and effort, the laboratory cement injection devices are essential alternatives for evaluating soil injection ability. This study assesses the performance of a low-pressure laboratory grouting device by improving loose sandy soil injected using binders formed of Silica Fume (SF) as a chemical admixture (10% of Ordinary Portland Cement OPC mass) to different (W/C) water/cement ratios (by mass materials) mixes. Trial grouting processes were executed to optimize the practical ranges of the operating factors of the laboratory device to obtain consistent grouted model pile samples. The paper examined the relations of the binders' W/C ratios with the densities, elasticity modulus (E), and Uniaxial Compression Stress (UCS) of the grouted piles. The investigation results show that as the binder W/C ratio rises, the grouted pile samples' dry density, E, and UCS values decrease. For the binder injected with a W/C ratio of one and 10% SF additive by weight of cement mass, the highest values of the grouted pile for density, E, and UCS were about 2.32 g/cm3, 23 MPa, and 2000 MPa, respectively. The UCS of the grouted pile proved that the binders' W/C ratios and the SF addition have an evident effect on the investigated factors of the grouted piles.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri May 21 2021
Journal Name
Transportation Infrastructure Geotechnology
Behavior of Floating Stone Columns and Development of Porewater Pressure Under Cyclic Loading
...Show More Authors

View Publication Preview PDF
Scopus (19)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Mon Dec 30 2019
Journal Name
College Of Islamic Sciences
Qur'anic intentions in the Prophet’s Investigation (Selected models)
...Show More Authors

This research deals with the role of Qur’anic intents in facilitating and facilitating the understanding of the reader and the seeker of knowledge of the verses of the Holy Qur’an, particularly in the doctrinal investigations (prophecies), and the feature that distinguishes reference to the books of the intentions or the intentional interpretations is that it sings from referring to the books of speakers and delving into their differences in contractual issues and facilitating access To the meanings, purposes and wisdom that the wise street wanted directly from the rulings and orders contained in the verses of the wise Qur’an.

View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
View Publication Preview PDF
Scopus (31)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Journal Of Optical Technology
Random signal generation and synchronization in lab-scale measurement device independent–quantum key distribution systems
...Show More Authors

In this paper, a random transistor-transistor logic signal generator and a synchronization circuit are designed and implemented in lab-scale measurement device independent–quantum key distribution systems. The random operation of the weak coherent sources and the system’s synchronization signals were tested by a time to digital convertor.

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Jun 30 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Improving of Design Parameters of an Industrial Continuous Catalytic Reforming Reactors
...Show More Authors

Catalytic reforming of naphtha occupies an important issue in refineries for obtaining high octane gasoline and aromatic compounds, which are the basic materials of petrochemical industries. In this study, a novel of design parameters for industrial continuous catalytic reforming reactors of naphtha is proposed to increase the aromatics and hydrogen productions. Improving a rigorous mathematical model for industrial catalytic reactors of naphtha is studied here based on industrial data applying a new kinetic and deactivation model. The optimal design variables are obtained utilizing the optimization process in order to build the model with high accuracy and such design parameters are then applied to get the best configuration of this pro

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Materials Today: Proceedings
Hydraulic behaviour and improving of water quality of the Chibayish Marshes
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Aug 09 2025
Journal Name
Scientific Reports
Machine learning models for predicting morphological traits and optimizing genotype and planting date in roselle (Hibiscus Sabdariffa L.)
...Show More Authors

Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Mathematical Models And Computer Simulations
Function Approximation Technique (FAT)-Based Adaptive Feedback Linearization Control for Nonlinear Aeroelastic Wing Models Considering Different Actuation Scenarios
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Fri Jun 20 2014
Journal Name
Jurnal Teknologi
A Review of Snake Models in Medical MR Image Segmentation
...Show More Authors

Developing an efficient algorithm for automated Magnetic Resonance Imaging (MRI) segmentation to characterize tumor abnormalities in an accurate and reproducible manner is ever demanding. This paper presents an overview of the recent development and challenges of the energy minimizing active contour segmentation model called snake for the MRI. This model is successfully used in contour detection for object recognition, computer vision and graphics as well as biomedical image processing including X-ray, MRI and Ultrasound images. Snakes being deformable well-defined curves in the image domain can move under the influence of internal forces and external forces are subsequently derived from the image data. We underscore a critical appraisal

... Show More
Scopus (10)
Scopus