Creep testing is an important part of the characterization of composite materials. It is crucial to determine long-term deflection levels and time-to-failure for these advanced materials. The work is carried out to investigate creep behavior on isotropic composite columns. Isotropy property was obtained by making a new type of composite made from a paste of particles of carbon fibers mixed with epoxy resin and E-glass particles mixed with epoxy resin. This type of manufacturing process can be called the compression mold composite or the squeeze mold composite. Experimental work was carried out with changing the fiber concentration (30, 40 and 50% mass fraction), cross section shape, and type of composite. The creep results showed that the higher the fiber concentration, the more the creep resistance. Type of fiber plays a very critical role, where carbon/epoxy composite showed much higher creep resistance and also showed much higher modulus of elasticity than the E-glass/epoxy composite. Specimen shape factor noticed to play a very small role. However, square cross sectional area showed slightly higher resistance for creep than the rectangular cross sectional area. This difference is not critical and can be ignored. F.E.M simulation with ANSYS Inc. software was implied and results were compatible with the experimental work with a maximum discrepancy of (17.24%).
This manuscript investigated the effect of anchorage CFRP wrapping sheets, bolts, and laminate interlock on increasing the efficiency of flexural strengthening for the post-tension girder using CFRP composites techniques longitudinal laminates at the soffit for partially damaged loss of about 14.3% from its area of prestressed concrete beams, and the impact on restoring the original flexural capacity of PC girder. Mitigating delamination of the soffit of horizontal laminates (CFRP). The texture of the laminate and anchorages influenced the stress of the laminate carbon fiber, the mode of crack propagation and failure, and consequently, the beam's attitude has been investigated in this manuscript. The experimental findi
... Show MoreAlthough many technological improvements are occurring in power production worldwide, power plants in third world countries are still using old technologies that are causing thermal pollution to the water bodies. Power facilities that dump hot water into water bodies are damaging aquatic life. In the study, the impact of the Al Dora thermal power plant on a nearby stretch of Tigris River in Baghdad city was assessed by measuring the temperature of the disposed of hot water in various cross-sections of the selected stretch of Tigris River, including measuring the thermal mixing length. The measurements were conducted in winter, spring, and summer. For field measurements, it was found that the impact of recovery distances
... Show MoreThe cost of microalgae harvesting constitutes a heavy burden on the commercialization of biofuel production. The present study addressed this problem through economic and parametric comparison of electrochemical harvesting using a sacrificial electrode (aluminum) and a nonsacrificial electrode (graphite). The harvesting efficiency, power consumption, and operation cost were collected as objective variables as a function of applied current and initial pH of the solution. The results indicated that high harvesting efficiency obtained by using aluminum anode is achieved in short electrolysis time. That harvesting efficiency can be enhanced by increasing the applied current or the electrolysis time for both electrode materials, where 98
... Show Morein this paper fourth order kutta method has been used to find the numerical solution for different types of first liner
Dental implants can be made of various materials, and amongst them, titanium and titanium alloy were the materials of choice for dental implants for many years because of their biocompatibility. The two alloys have a high level of biocompatibility, a lower modulus of elasticity, and better corrosion resistance than other alloys. Thus, they are frequently utilized in biomedical applications and mostly replace stiff fabrics. The latest advances in a new strontium oxide–cp titanium composite alloy are the main topic of this research. With regard to biomedical applications, additions of strontium oxide were synthesized at three distinct weight percentages (2%, 4%, and 6% by wt%). Powder metallurgy was used to create the alloys, which
... Show MoreReceipt date:08/26/2020 accepted date:9/8/2020 Publication date:12/31/2021
This work is licensed under a Creative Commons Attribution 4.0 International License.
The research entitled (Moderation in Omani External Political Behavior 1970-2020. contained introduction and two sections conclusion and recommendations. The introduction included a general overview of the topic, and the importance of the political behavior o
... Show MoreTwo different composite materials were prepared by stir casting method of AA 6061 alloy as a matrix reinforced with two addition different ceramic materials Al2O3 and B4C of grain size 20 µm by 2.5, 5, 7.5 and10% in weight. The composite material with aluminum alloy as a matrix possesses a unique mechanical properties such as: high specific strength and hardness, low density, and high resistance to corrosion and friction wear. This composite is widely used in automotive parts space and marine applications.
Pin-on-disc technique was used to calculate the wear rate for each addition of Al2O3 and B4C particles. Rockwell hardness test and
... Show More
