The ejector refrigeration system is a desirable choice to reduce energy consumption. A Computational Fluid Dynamics CFD simulation using the ANSYS package was performed to investigate the flow inside the ejector and determine the performance of a small-scale steam ejector. The experimental results showed that at the nozzle throat diameter of 2.6 mm and the evaporator temperature of 10oC, increasing boiler temperature from 110oC to 140oC decreases the entrainment ratio by 66.25%. At the boiler temperature of 120oC, increasing the evaporator temperature from 7.5 to 15 oC increases the entrainment ratio by 65.57%. While at the boiler temperature of 120oC and the evaporator temperature of 10oC, increasing the nozzle throat diameter from 2.4 to 2.8 mm decreases the entrainment ratio by 40%. The numerical results showed that reducing the condenser back pressure or increasing the primary fluid temperature, secondary fluid temperature, and nozzle throat diameter moves the second shock waves in the downstream direction. It could be concluded that the second shock series position detects the ejector operation mode. The ejector runs in critical mode if the second shock series position is close to the diffuser. In contrast, if the second shock series position moves toward the upstream, the ejector runs in subcritical mode.
Different parameters of double pipe helical coil were investigation experimentally. Four coils were used; three with a curvature ratio (0.037, 0.031, and 0.028) and 11mm diameter of the inner tube while the fourth with 0.033 curvature ratio and 13 mm diameter of the inner tube. The hot water flow in the inner tube whereas the cold water flows in the annulus. The inlet temperatures of hot and cold water are 50 0C and 18 0C respectively. The inner mass flow rate ranges from 0.0167 to 0.0583 kg/s. The results show the Nusselt number increase with increase curvature ratio. The Nusselt number of the coil with 0.037 curvature ratio increases by approximately 12.3 % as compare with 0.028 curvature ratio. The results also r
... Show MoreAcidizing is one of the most used stimulation techniques in the petroleum industry. Several reports have been issued on the difficulties encountered during the stimulation operation of the Ahdeb oil field, particularly in the development of the Mishrif reservoir, including the following: (1) high injection pressures make it difficult to inject acid into the reservoir formation, and (2) only a few acid jobs have been effective in Ahdeb oil wells, while the bulk of the others has been unsuccessful. The significant failure rate of oil well stimulation in this deposit necessitates more investigations. Thus, we carried out this experimental study to systematically investigate the influence of acid treatment on the geomechanical properties of Mi4
... Show MoreThe need for renewable energy sources is higher than ever due to rising global warming, climate change, and ozone depletion. For refrigeration and air conditioning applications, adsorption refrigeration systems are viable alternatives cooling techniques. This study is a topic and part of the M.Sc. thesis. A field solar-powered ice maker unit was created, studied, tested, and evaluated on the 13th and 30th of May, 2022. Activated carbon and methanol pair was used to set up a refrigeration system in Baghdad (Al Dora). Experimental tests were carried out outdoors to determine the coefficient of performance COP and specific cooling power SCP of the system. The results showed that the lowest temperature
... Show MoreSolar photovoltaic (PV) has many environmental benefits and it is considered to be a practical alternative to traditional energy generation. The electrical conversion efficiency of such systems is inherently limited due to the relatively high thermal resistance of the PV components. An approach for intensifying electrical and thermal production of air-type photovoltaic thermal (PVT) systems via applying a combination of fins and surface zigzags was proposed in this paper. This research study aims to apply three performance enhancers: case B, including internal fins; case C, back surface zigzags; and case D, combinations of fins and surface zigzags; whereas the baseline smooth duct rep
In solar-thermal adsorption/desorption processes, it is not always possible to preserve equal operating times for the adsorption/desorption modes due to the fluctuating supply nature of the source which largely affects the system’s operating conditions. This paper seeks to examine the impact of adopting unequal adsorption/desorption times on the entire cooling performance of solar adsorption systems. A cooling system with silica gel–water as adsorbent-adsorbate pair has been built and tested under the climatic condition of Iraq. A mathematical model has been established to predict the system performance, and the results are successfully validated via the experimental findings. The results show that, the system can be operational
... Show MoreRheological instrument is one of the basic analytical measurements for diagnosing the properties of polymers fluids to be used in any industry. In this research polycarbonate was chosen because of its importance in many areas and possesses several distinct properties.
Two kinds of rheometers devices were used at different range of temperatures from 220 ˚C-300 ˚C to characterize the rheological technique of melted polycarbonate (Makrolon 2805) by a combination of different investigating techniques. We compared the results of the linear (oscillatory) method with the non-linear (steady-state) method; the former method provided the storage and the loss modulus of melted polycarbonate, and presented the Cox-Merz model as well. One of the
The efficient behavior of a low-concentrating photovoltaic-thermal system with a micro-jet channel (LCPV/T-JET) and booster mirror reflector is experimentally evaluated here. Micro-jets promote the thermal management of PV solar cells by implementing jet water as active cooling, which is still in the early stages of development. The booster mirror reflector concentrates solar irradiance into solar cells and improves the thermal, electrical, and combined efficiencies of the LCPV/T-JET system. The LCPV/T-JET system was tested under ambient weather conditions in the city of Bangi, Selangor, Malaysia, and all data was recorded between 10:00 a.m. and 4:00 p.m. Parametric studies were conducted to compare the performance of the LCPV/T-JET system
... Show MoreThe present work aims to study the combustion characteristics related to syngas-diesel dual-fuel engine operates at lambda value of 1.6 operated by five different replacement ratios (RR) of syngas with diesel, which are (10%, 20%, 30 %, 40 % and 50%). ANSYS Workbench (CFD) was used for simulating the combustion of the syngas-diesel dual-fuel engine. The numerical simulations were carried out on the Ricardo-Hydra diesel engine. The simulation results revealed that the diesel engine’s combustion efficiency was enhanced by increasing the diesel replacement with Syngas fuel. The diesel engine’s combustion efficiency The peak in-cylinder temperature was enhanced from 915.9K to 2790.5K
The mechanism of the electronic flow rate at Al-TiO2 interfaces system has been studied using the postulate of electronic quantum theory. The different structural of two materials lead to suggestion the continuum energy level for Al metal and TiO2 semiconductor. The electronic flow rate at the Al-TiO2 complex has affected by transition energy, coupling strength and contact at the interface of two materials. The flow charge rate at Al-TiO2 is increased by increasing coupling strength and decreasing transition energy.
A low-cost reverse flow plasma system powered by argon gas pumping was built using homemade materials in this paper. The length of the resulting arc change was directly proportional to the flow rate, while using the thermal camera to examine the thermal intensity distribution and demonstrating that it is concentrated in the centre, away from the walls at various flow rates, the resulting arc's spectra were also measured. The results show that as the gas flow rate increased, so did the ambient temperature. The results show that the medium containing the arc has a maximum temperature of 34.1 ˚C at a flow rate of 14 L/min and a minimum temperature of 22.6 ˚C at a flow rate of 6 L/min.