In engineering, the ground in seismically active places may be subjected to static and seismic stresses. To avoid bearing capacity collapse, increasing the system's dynamic rigidity, and/or reducing dynamic fluctuations, it may be required to employ deep foundations instead of shallow ones. The axial aptitude and pipe pile distribution of load under static conditions have been well reported, but more study is needed to understand the dynamic axial response. Therefore, this research discusses the outputs of the 3D finite element models on the soil-pile behavior under different acceleration intensities and soil states by using MIDAS GTS NX. The pipe pile was represented as a simple elastic, and a modified Mohr-Coulomb model was used to describe the surrounding soil layers. When low acceleration was introduced in the early stages, positive frictional resistance (i.e., in dry soil, the FR was about 1.61, 1.98, and 0.9 Mpa under Kobe, Halabja, and Ali Algharbi earthquakes, respectively) was recorded. However, as the acceleration increased (from PGA = 0.1 g and 0.102 g to PGA = 0.82 g), the resistance reduced and eventually turned negative. In this study, both internal and exterior frictional resistance were measured. It was found that the soil state and acceleration intensity both have a noticeable effect on the failure process, i.e., the maximum plug soil resistance decreased by about 55% by changing the soil condition from a dry to a saturated state under the recorded data of the Kobe earthquake. A rough estimation of the long-term settlements at the shaken soil surface is meant to be included in the results of this research.
The paper presents a highly accurate power flow solution, reducing the possibility of ending at local minima, by using Real-Coded Genetic Algorithm (RCGA) with system reduction and restoration. The proposed method (RCGA) is modified to reduce the total computing time by reducing the system in size to that of the generator buses, which, for any realistic system, will be smaller in number, and the load buses are eliminated. Then solving the power flow problem for the generator buses only by real-coded GA to calculate the voltage phase angles, whereas the voltage magnitudes are specified resulted in reduced computation time for the solution. Then the system is restored by calculating the voltages of the load buses in terms
... Show MoreActive vibration control is the main problem in different structure. Smart material like piezoelectric make a structure smart, adaptive and self-controlling so, they are effective in active vibration control. In this paper piezoelectric elements are used as sensors and actuators in flexible structures for sensing and actuating purposes, and to control the vibration of a cantilever beam by using sliding mode control. The sliding mode controller (SMC) is designed to attenuate the vibration induced by initial tip displacement which is equal to 15 mm. It is designed based on the balance realization reduction method where three states are selected for the reduced model from the 24th states that describe the c
... Show MoreThe influence and hazard of fire flame are one of the most important parameters that affecting the durability and strength of structural members. This research studied the influence of fire flame on the behavior of reinforced concrete beams affected by repeated load. Nine self- compacted reinforced concrete beams were castellated, all have the same geometric layout (0.15x0.15x1.00) m, reinforcement details and compressive strength (50 Mpa). To estimate the effect of fire flame disaster, four temperatures were adopted (200, 300, 400 and 500) oC and two method of cooling were used (graduated and sudden). In the first cooling method, graduated, the tested beams were leaved to cool in air while in the second method, sudden, water splash was use
... Show MoreThe removal of COD from wastewater generated by petroleum refinery has been investigated by adopting electrocoagulation (EC) combined with adsorption using activated carbon (AC) derived from avocado seeds. The process variables influencing COD removal were studied: current density (2–10 mA/cm2), pH (4–9), and AC dosage (0.2–1 g/L). Response surface methodology (RSM) based on Box–Behnken design (BBD) was used to construct a mathematical model of the EC/AC process. Results showed that current density has the major effect on the COD removal with a percent of contribution 32.78% followed by pH while AC dosage has not a remarkable effect due to the good characteristics of AC derived from avocado seeds. Increasing current density gives be
... Show MoreThe ability to produce load-bearing masonry units adopting ACI 211.1 mix design using (1:3.2:2.5) as (cement: fine aggregate: coarse aggregate) with slump range (25-50mm) which can conform (dimension, absorption, and compressive strength) within IQS 1077/1987 requirements type A was our main goal of the study. The ability to use low cement content (300 kg/m3) to handle our market price products since the most consumption in wall construction for low-cost buildings was encouraging. The use of (10 and 20%) of LECA as partial volume replacement of coarse aggregate to reduce the huge weight of masonry blocks can also be recommended. The types of production of the load-bearing masonry units were A and B for (
... Show MoreThe present search aims to develop a test for selective attention, cognitive load and thinking mistakes and measuring these concepts among Baghdad university students. To make a comparison between the selective attention, cognitive load, and the mistakes of thinking among students in term of gender. To identify the relationship among the selective attention, cognitive load and the mistakes of thinking of university students. To achieve these purposes, the searcher has developed a test for selective attention, cognitive load, and the mistakes of thinking. Then, these tools were applied to a sample of (200) university students were selected from (21) college. The researcher used t-test of one sample, t-test of two independent
... Show MoreAn extensive program of laboratory testing was conducted on ring footing rested on gypseous soil brought from the north of Iraq (Salah El-Deen governorate) with a gypsum content of 59%. There are limited researches available, and even fewer have been done experimentally to understand how to ring footings behave; almost all the previous works only concern the behavior of ring footing under vertical loads, Moreover, relatively few studies have examined the impact of eccentric load and inclined load on such footing. In this study, a series of tests, including dry and wet tests, were carried out using a steel container (600×600×600) mm, metal ring footing (100 mm outer diameter and 40 mm inner diameter) was placed in the m
... Show MoreThese days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that. The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the proce
... Show MoreAn experiment was carried out evaluate the performance of RAU combined equipment under three levels of practical speed, (V1) 4.06 km. h-1, (V2) 4.43 km. hr-1 and (V3) 5.76 km. hr-1, and three levels of depth with 10,20and 30 cm. It is denoted by D1, D2, D3 respectively. A split plot design was used within the RCBD design with three replications. The experiment results showed that the first practical speed 4.06 km.hr-1 achieved the lowest slippage percentage from 9.61%, lowest traction power 14.65hp, lowest soil penetration resistance to1.34 kg.cm-2, and the highest total operating
In this study many specimen s were prepared from 2024-T3 Aluminum alloy for corrosion test by the dimensions of (15*15*3) mm according to ASTM G71-31 and then subjected to shot peening process at different time (15, 30, 45) minutes using steel ball having a diameter of 2.75 mm and Rockwell Hardness of 55RC to induce compressive residual stress which were measured using X-Ray diffraction method, surface roughness and hardness were tested before and after peening. Electrochemical corrosion test by Tafel extrapolation method was carried out in an environment of 3 .5% NaCl solutions (sea water) where Corrosion rate calculated using Tafle equation.
The obtained results show a favorable influence of SP treatment
... Show More