Preferred Language
Articles
/
joe-1918
The Behavior of Gypseous Soil under Vertical Vibration Loading
...Show More Authors

The dynamic response of foundation rest on collapsible soil in dry and soaked states is studied through wide experimental programmed. Gypseous soil from Tikrit governorate area was obtained and subjected to various physical and chemical analysis to determine its properties. Steel rectangular footing (400x200x20) mm is manufactured. The machine is fitted to the footing, then the model machine foundation is placed centrally over the prepared soil layer in steel container (1200x 1000x1000)mm with proper care to maintain the center of gravity of whole system lie in the same vertical line with container.Then, the footing is subjected to vertical harmonic loading using a rotating mass type mechanical oscillator to simulate different dynamic loads. The effect of soaking and eccentric mass was investigated. The results showed that the amplitude of displacement in dry state is greater than its value at soaked state, while the resonant frequency in the soaked state is greater than in dry state. Also, the results showed that for specific frequency ,an increasing in eccentric mass leads to increase in amplitude of displacement. Moreover, an increasing in resonant frequency can be absoreved when eccentric mass is increased.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Apr 20 2017
Journal Name
International Journal Of Science And Research (ijsr)
Effect of Different Sealer Systems on the Resistance to Vertical-Root-Fracture of Endodontically Treated Tooth
...Show More Authors

Abstract: An unfavorable complication of root canal is vertical root fracture. The aim of present study is to evaluate the vertical root fracture of treated teeth filled with gutta percha and Resilon obturating material using different sealers. Forty mandibular premolars used in the study. Canals randomly divided into four groups (n=10). Group-A eugenol-based (Endofill) sealer with gutta percha; GroupB epoxy-amine (AH Plus) sealer with gutta percha; Group-C resin-based (Real Seal) sealer with Resilon; or Group-D epoxide-based (Perma Evolution) sealer with gutta percha. Roots mounted vertically in cold cure acrylic blocks and subjected to vertical loading with a crosshead speed of 1mm ̸min. The point at which fracture of the roots occurred

... Show More
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Free Vibration Analysis for Dynamic Stiffness Degradation of Cracked Cantilever Plate
...Show More Authors

 

In the present work a dynamic analysis technique have been developed to investigate and characterize the quantity of elastic module degradation of cracked cantilever plates due to presence of a defect such as surface of internal crack under free vibration. A new generalized technique represents the first step in developing a health monitoring system, the effects of such defects on the modal frequencies has been the main key quantifying the elasticity modulii due to presence any type of un-visible defect. In this paper the finite element method has been used to determine the free vibration characteristics for cracked cantilever plate (internal flaws), this present work achieved by different position of crack. Stiffness re

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 30 2018
Journal Name
Journal Of Engineering
Active Vibration Control of Cantilever Beam by Using Optimal LQR Controller
...Show More Authors

Many of mechanical systems are exposed to undesired vibrations, so designing an active vibration control (AVC) system is important in engineering decisions to reduce this vibration. Smart structure technology is used for vibration reduction. Therefore, the cantilever beam is embedded by a piezoelectric (PZT) as an actuator. The optimal LQR controller is designed that reduce the vibration of the smart beam by using a PZT element.  

In this study the main part is to change the length of the aluminum cantilever beam, so keep the control gains, the excitation, the actuation voltage, and mechanical properties of the aluminum beam for each length of the smart cantilever beam and observe the behavior and effec

... Show More
View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Effect of Metakaolin on the geotechnical properties of Expansive Soil
...Show More Authors

Expansive soil spreads in Iraq and some countries of the world. But there are many problems can be occurred to the structures that built on, so we must study the characteristics of these soils due to the  problems that may be caused to these structures which built on these kinds of soil and then study the methods of treatment. The present study focuses on improving  the geotechnical properties of expansive soils by treating it Metakaolin(M). Metakaolin (M) has never been used before as an improvement material  for stabilizing the expansive soil . Metakaolin  is a pozzolanic material. It’s obtained by calcination of kaolinite clay at temperatures from 700°C to 800°C. Kaolin chemical composition is

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 28 2019
Journal Name
The Open Civil Engineering Journal
Experimental Investigation of Skirt Footing Subjected to Lateral Loading
...Show More Authors
Background:

The skirt foundation is one of the powerful types of foundations to resist the lateral loads produced from natural forces, such as earthquakes and wind action, or from the type of structures, such as oil platforms and offshore wind turbines.

Objective and Methodology:

This research experimentally investigated the response of skirted footing resting on sandy soil of different states to lateral applications of loads on a small-scale physical model manufactured for this purpose. The parameters studied are the dista

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Wed Dec 27 2017
Journal Name
Al-khwarizmi Engineering Journal
The Effect of Restriction Shape On Laminar Natural Convection Heat Transfer In A Vertical Circular Tube
...Show More Authors

Natural convection heat transfer is experimentally investigated for laminar air flow in a vertical circular tube by using the boundary condition of constant wall heat flux in the ranges of (RaL) from (1.1*109) to (4.7*109). The experimental set-up was designed for determining the effect of different types of restrictions placed at entry of heated tube in bottom position, on the surface temperature distribution and on the local and average heat transfer coefficients. The apparatus was made with an electrically heated cylinder of a length (900mm) and diameter (30mm). The entry restrictions were included a circular tube of same diameter as the heated cylinder but with lengths of (60cm, 120cm), sharp-edge and

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 15 2022
Journal Name
Engineering, Technology & Applied Science Research
Numerical Modeling of a Pile Group Subjected to Seismic Loading Using the Hypoplasticity Model
...Show More Authors

Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is

... Show More
View Publication
Crossref (6)
Crossref
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
Effects of Fuel Oil on the Geotechnical Properties of Clay Soil
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Jan 11 2021
Journal Name
Engineering, Technology & Applied Science Research
The Effect of Low Velocity Impact Loading on SelfCompacting Concrete Reinforced with Carbon Fiber Reinforced Polymers
...Show More Authors

t-Self-Compacting Concrete (SCC) reduces environmental noise and has more workability. This research presents an investigation of the behavior of SCC under mechanical loading (impact loading). Two types of cement have been used to produce SCC mixtures, Ordinary Portland Cement (OPC) and Portland Limestone Cement (PLC), which reduces the emission of carbon dioxide during the manufacturing process. The mixes were reinforced with Carbon Fiber Reinforced Polymer (CFRP) which is usually used to improve the seismic performance of masonry walls, to replace lost steel reinforcements, or to increase column strength and ductility. Workability tests were carried out for fresh SCC. Prepared concrete slabs of 500×500×50mm were tested for lo

... Show More
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Sliding Mode Vibration Suppression Control Design for a Smart Beam
...Show More Authors

Active vibration control is the main problem in different structure. Smart material like piezoelectric make a structure smart, adaptive and self-controlling so, they are effective in active vibration control. In this paper piezoelectric elements are used as sensors and actuators in flexible structures for sensing and actuating purposes, and to control the vibration of a cantilever beam by using sliding mode control. The sliding mode controller (SMC) is designed to attenuate the vibration induced by initial tip displacement which is equal to 15 mm.  It is designed based on the balance realization reduction method where three states are selected for the reduced model from the 24th states that describe the c

... Show More
View Publication Preview PDF