Preferred Language
Articles
/
joe-1884
Controlling the Unbalanced Voltages of a Series-Connected Lead-Acid Batteries in a PV Power Storage System using Dynamic Capacitor Technique

Lead-acid batteries have been used increasingly in recent years in solar power systems, especially in homes and small businesses, due to their cheapness and advanced development in manufacturing them. However, these batteries have low voltages and low capacities, to increase voltage and capacities, they need to be connected in series and parallel. Whether they are connected in series or parallel, their voltages and capacities must be equal otherwise the quality of service will be degraded. The fact that these different voltages are inherent in their manufacturing, but these unbalanced voltages can be controlled. Using a switched capacitor is a method that was used in many methods for balancing voltages, but their responses are slow. To increase the response and control of the balancing process, this research proposes a novel technique that consists of a dynamic capacitor for controlling the unbalanced voltages of series-connected lead-acid batteries. The proposed technique uses a main capacitor and an inductor with two switches their on/off states are controlled through a pulse width modulation. The technique is designed and validated using MATLAB/Simulink and the results for different cases are compared with other techniques such as switched capacitor technique. Results show that the proposed method promised the balancing control in a shorter time and better performance than other techniques which are crucial in the battery’s voltage balancing.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Publication Date
Tue Oct 27 2020
Journal Name
Journal Of Mechanics Of Continua And Mathematical Sciences
Crossref
View Publication
Publication Date
Mon Oct 01 2018
Journal Name
International Journal Of Modern Trends In Engineering And Research
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
Numeral Recognition Using Statistical Methods Comparison Study

The area of character recognition has received a considerable attention by researchers all over the world during the last three decades. However, this research explores best sets of feature extraction techniques and studies the accuracy of well-known classifiers for Arabic numeral using the Statistical styles in two methods and making comparison study between them. First method Linear Discriminant function that is yield results with accuracy as high as 90% of original grouped cases correctly classified. In the second method, we proposed algorithm, The results show the efficiency of the proposed algorithms, where it is found to achieve recognition accuracy of 92.9% and 91.4%. This is providing efficiency more than the first method.

Crossref
View Publication Preview PDF
Publication Date
Wed Mar 01 2017
Journal Name
2017 Annual Conference On New Trends In Information & Communications Technology Applications (ntict)
Scopus (6)
Crossref (5)
Scopus Crossref
View Publication
Publication Date
Thu Nov 01 2018
Journal Name
2018 1st Annual International Conference On Information And Sciences (aicis)
Speech Emotion Recognition Using Minimum Extracted Features

Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),

... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Jul 14 2021
Journal Name
The Open Civil Engineering Journal
Producing Sustainable Concrete using Nano Recycled Glass
Background:

Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.

Objective:

Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.

Methods:

A nano recycled glass p

... Show More
Crossref (10)
Crossref
View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
International Journal Of Data Mining, Modelling And Management
Association rules mining using cuckoo search algorithm

Association rules mining (ARM) is a fundamental and widely used data mining technique to achieve useful information about data. The traditional ARM algorithms are degrading computation efficiency by mining too many association rules which are not appropriate for a given user. Recent research in (ARM) is investigating the use of metaheuristic algorithms which are looking for only a subset of high-quality rules. In this paper, a modified discrete cuckoo search algorithm for association rules mining DCS-ARM is proposed for this purpose. The effectiveness of our algorithm is tested against a set of well-known transactional databases. Results indicate that the proposed algorithm outperforms the existing metaheuristic methods.

Scopus (7)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
FACE IDENTIFICATION USING BACK-PROPAGATION ADAPTIVE MULTIWAVENET

Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Voice Identification Using MFCC and Vector Quantization

The speaker identification is one of the fundamental problems in speech processing and voice modeling. The speaker identification applications include authentication in critical security systems and the accuracy of the selection. Large-scale voice recognition applications are a major challenge. Quick search in the speaker database requires fast, modern techniques and relies on artificial intelligence to achieve the desired results from the system. Many efforts are made to achieve this through the establishment of variable-based systems and the development of new methodologies for speaker identification. Speaker identification is the process of recognizing who is speaking using the characteristics extracted from the speech's waves like pi

... Show More
Scopus (4)
Scopus Clarivate Crossref
View Publication Preview PDF