Information security contributes directly to increase the level of trust between the government’s departments by providing an assurance of confidentiality, integrity, and availability of sensitive governmental information. Many threats that are caused mainly by malicious acts can shutdown the egovernment services. Therefore the governments are urged to implement security in e-government projects.
Some modifications were proposed to the security assessment multi-layer model (Sabri model) to be more comprehensive model and more convenient for the Iraqi government. The proposed model can be used as a tool to assess the level of security readiness of government departments, a checklist for the required security measures and as a common security reference in the government organizations of Iraq. In order to make this model more practical, applicable and to represent the security readiness with a numerical value, evaluation modeling has been done for this model by using fuzzy logic tool of MATLAB R2010a program.
Since the risk assessment is considered as a major part in the information security management system, an effective and practical method to assess security risk is proposed by combining FEMRA (fuzzy expert model risk assessment) and Wavelet Neural Network (WNN). The fuzzy system is used to generate the training data set in order to make the required training for WNN. The proposed method is applied when a risk assessment case study is made at the computer center of Baghdad University. It is found from the numerical results that the risk levels obtained by WNN are (with maximum of 58.23) too close to these calculated from FEMRA (with maximum of 60), with an average error of 5.51%. According to these results, the proposed method is effective and reasonable and can provide the support toward establishing the e-government.
A large number of researchers had attempted to identify the pattern of the functional relationship between fertility from a side and economic and social characteristics of the population from another, with the strength of effect of each. So, this research aims to monitor and analyze changes in the level of fertility temporally and spatially in recent decades, in addition to estimating fertility levels in Iraq for the period (1977-2011) and then make forecasting to the level of fertility in Iraq at the national level (except for the Kurdistan region), and for the period of (2012-2031). To achieve this goal has been the use of the Lee-Carter model to estimate fertility rates and predictable as well. As this is the form often has been familiar
... Show MoreThe Effect of the Addie and Shayer Model on the Achievement of Fifth Grade Students and their Attitudes towards History
- Ahmed Hashim Mohammed and Hadil Jassas Ali
University of Baghdad - College of Education for Women
Abstract
The current research aims to examine the effect of the Adi and Shayer model on the achievement of fifth-grade students and their attitudes toward history. To achieve the research objective, the researcher has adopted two null hypotheses. 1) there is no statistically significant difference at the level o
... Show MoreIn this paper, a discrete SIS epidemic model with immigrant and treatment effects is proposed. Stability analysis of the endemic equilibria and disease-free is presented. Numerical simulations are conformed the theoretical results, and it is illustrated how the immigrants, as well as treatment effects, change current model behavior
Integration of laminar bubbling flow with heat transfer equations in a novel internal jacket airlift bioreactor using microbubbles technology was examined in the present study. The investigation was accomplished via Multiphysics modelling to calculate the gas holdup, velocity of liquid recirculation, mixing time and volume dead zone for hydrodynamic aspect. The temperature and internal energy were determined for heat transfer aspect.
The results showed that the concentration of microbubbles in the unsparged area is greater than the chance of large bubbles with no dead zones being observed in the proposed design. In addition the pressure, due to the recirculation velocity of liquid around the draft
... Show MoreCompressing an image and reconstructing it without degrading its original quality is one of the challenges that still exist now a day. A coding system that considers both quality and compression rate is implemented in this work. The implemented system applies a high synthetic entropy coding schema to store the compressed image at the smallest size as possible without affecting its original quality. This coding schema is applied with two transform-based techniques, one with Discrete Cosine Transform and the other with Discrete Wavelet Transform. The implemented system was tested with different standard color images and the obtained results with different evaluation metrics have been shown. A comparison was made with some previous rel
... Show MoreIn front of the serious deterioration of the elements of the environment, new convictions arose the need to integrate into the global environmental concerns as being one and the issue of shared responsibility and the impact of this conviction, the evolution of the environment protection law in many countries, including Algeria. Due to the multiplicity of perceptions about the environmental result of multiple scientific disciplines, the legislative concept emerged to protect the environment, which includes prevention and rational management and conservation and restoration and repair.
Environmental planning for the various governments and countries aims to avert disasters and achieve the
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MorePredicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show Moreconventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.