Preferred Language
Articles
/
joe-1855
Material Selection for Unmanned Aerial Vehicles (UAVs) Wings Using Ashby Indices Integrated with Grey Relation Analysis Approach Based on Weighted Entropy for Ranking
...Show More Authors

The designer must find the optimum match between the object's technical and economic needs and the performance and production requirements of the various material options when choosing material for an engineering application. This study proposes an integrated (hybrid) strategy for selecting the optimal material for an engineering design depending on design requirements. The primary objective is to determine the best candidate material for the drone wings based on Ashby's performance indices and then rank the result using a grey relational technique with the entropy weight method. Aluminum alloys, titanium alloys, composites, and wood have been suggested as suitable materials for manufacturing drone wings. The requirements for designing a drone's wings are to make them as light as possible while meeting the stiffness, strength, and fracture toughness criteria. The conclusion indicates that Carbon Fiber-Reinforced Polymer (CFRP) is the best material for producing drone wings. In contrast, wood and aluminum alloys were the cheapest materials when the design had to be inexpensive.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 09 2023
Journal Name
2023 15th International Conference On Developments In Esystems Engineering (dese)
Inverse Kinematics Optimization for Humanoid Robotic Legs Based on Particle Swarm Optimization
...Show More Authors

Calculating the Inverse Kinematic (IK) equations is a complex problem due to the nonlinearity of these equations. Choosing the end effector orientation affects the reach of the target location. The Forward Kinematics (FK) of Humanoid Robotic Legs (HRL) is determined by using DenavitHartenberg (DH) method. The HRL has two legs with five Degrees of Freedom (DoF) each. The paper proposes using a Particle Swarm Optimization (PSO) algorithm to optimize the best orientation angle of the end effector of HRL. The selected orientation angle is used to solve the IK equations to reach the target location with minimum error. The performance of the proposed method is measured by six scenarios with different simulated positions of the legs. The proposed

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Tue Mar 31 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Formation Evaluation for Nasiriyah Oil Field Based on The Non-Conventional Techniques
...Show More Authors

The unconventional techniques called “the quick look techniques”, have been developed to present well log data calculations, so that they may be scanned easily to identify the zones that warrant a more detailed analysis, these techniques have been generated by service companies at the well site which are among the useful, they provide the elements of information needed for making decisions quickly when time is of essence. The techniques used in this paper are:

  • Apparent resistivity Rwa
  • Rxo /Rt

   The above two methods had been used to evaluate Nasiriyah oil field formations (well-NS-3) to discover the hydrocarbon bearing formations. A compu

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Hybrid deep learning model for Arabic text classification based on mutual information
...Show More Authors

View Publication
Crossref (5)
Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Computers, Materials & Continua
An Optimal Method for Supply Chain Logistics Management Based on Neural Network
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
A Real-Time Fuzzy Load Flow and Contingency Analysis Based on Gaussian Distribution System
...Show More Authors

Fuzzy logic is used to solve the load flow and contingency analysis problems, so decreasing computing time and its the best selection instead of the traditional methods. The proposed  method is very accurate with outstanding computation time, which made the fuzzy load flow (FLF) suitable for real time application for small- as well as large-scale power systems. In addition that, the FLF efficiently able to solve load flow problem of ill-conditioned power systems and contingency analysis. The FLF method using Gaussian membership function requires less number of iterations and less computing time than that required in the FLF method using triangular membership function. Using sparsity technique for the input Ybus sparse matrix data gi

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 27 2020
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Phytochemical Investigation of Aerial Parts of Iraqi Cardaria draba
...Show More Authors

 The aim of this study was to study chemical constituents of aerial parts of Cardaria draba since no phytochemical investigation had been studied before in Iraq. Aerial parts of Cardaria draba were defatted by maceration in hexane for 72 h. The defatted plant materials were extracted using Soxhlet apparatus, the aqueous Methanol 90% as a solvent extraction for 18 h, and fractionated with petroleum ether- chloroform (CHCl3)- ethylacetate- and n-butanol respectivly. The ethyl acetate, n-butanol, and n-butanol after hydrolysis fractions were investigated by high performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) for its phenolic acid and flavonoid contents. Flavono

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 14 2025
Journal Name
South Eastern European Journal Of Public Health
Deep learning-based threat Intelligence system for IoT Network in Compliance With IEEE Standard
...Show More Authors

The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre

... Show More
View Publication
Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Design a system for an approved video copyright over cloud based on biometric iris and random walk generator using watermark technique
...Show More Authors

View Publication
Scopus (53)
Crossref (12)
Scopus Crossref
Publication Date
Fri Oct 02 2020
Journal Name
International Journal Of Pharmaceutical Research
A turbidimetric method for the quantitative determination of cyproheptadine hydrochloride in tablets using an optoelectronic detector based on the LEDs array
...Show More Authors

Scopus (16)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jan 31 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
Survey on intrusion detection system based on analysis concept drift: Status and future directions
...Show More Authors

Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor

... Show More
View Publication