This research takes up address the practical side by taking case studies for construction projects that include the various Iraqi governorates, as it includes conducting a field survey to identify the impact of parametric costs on construction projects and compare them with what was reached during the analysis and the extent of their validity and accuracy, as well as adopting the approach of personal interviews to know the reality of the state of construction projects. The results showed, after comparing field data and its measurement in construction projects for the sectors (public and private), the correlation between the expected and actual cost change was (97.8%), and this means that the data can be adopted in the research study of the integration of parametric costs in a predictive model for future study. Changes in the parametric costs of construction projects substantially impact their time, cost, and quality and are a major barrier to their execution, necessitating research, analysis, and the development of the most effective solutions. The study aims to identify the parametric cost accurately through iterative tests and continuous improvements by presenting literature describing the history and characteristics of the parametric cost methodologies and identifying each methodology's limitations, strengths, and weaknesses to promote a better understanding of their best practices and use for managing project cost
General Directorate of Surveying is considered one of the most important sources of maps in Iraq. It produced digital maps for whole Iraq in the last six years. These maps are produced from different data sources with unknown accuracy; therefore, the quality of these maps needs to be assessed. The main aim of this study is to evaluate the positional accuracy of digital maps that produced from General Directorate of Surveying. Two different study areas were selected: AL-Rusafa and AL-Karkh in Baghdad / Iraq with an area of 172.826 and 135.106 square kilometers, respectively. Different statistical analyses were conducted to calculate the elements of positional accuracy assessment (mean µ, root mean square error RMSE, mini
... Show MoreIn this paper we present a new method for solving fully fuzzy multi-objective linear programming problems and find the fuzzy optimal solution of it. Numerical examples are provided to illustrate the method.
We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St
... Show MoreThe aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
X-ray diffractometers deliver the best quality diffraction data while being easy to use and adaptable to various applications. When X-ray photons strike electrons in materials, the incident photons scatter in a direction different from the incident beam; if the scattered beams do not change in wavelength, this is known as elastic scattering, which causes amplitude and intensity diffraction, leading to constructive interference. When the incident beam gives some of its energy to the electrons, the scattered beam's wavelength differs from the incident beam's wavelength, causing inelastic scattering, which leads to destructive interference and zero-intensity diffraction. In this study, The modified size-strain plot method was used to examin
... Show MoreThe Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one
Facing industrial companies many pressures and challenges due to rapid changes in the business environment of contemporary, which requires them to do their performance look more inclusive rather than limiting performance evaluation on the financial perspective in spite of its importance, prompting companies to rethink their reality competitive through the adoption of methodologies and new philosophies to manage competitiveness of total quality management, and re-engineering of production processes, and knowledge management,... etc., as This study framework cognitive and practical "to evaluate the performance of a company Diyala General Electric Industries and how to rehabilitate