The effect of applied current on protection of carbon steel in 0.1N NaCl solution (pH=7) was investigated under flow conditions (0-0.262 m/s) for a range of temperatures (35-55°C) using rotating cylinder electrode. Various values of currents were applied to protect steel from corrosion, these were Iapp.=Icorr., Iapp.=2Icorr. and Iapp.=2.4Icorr. under stationary and flow conditions. Corrosion current was measured by weight loss method. The variation of protection potential with time and rotation velocity at various applied currents was assessed. It is found that the corrosion rate of carbon steel increases with rotation velocity and
has unstable trend with temperature. The protection current required varies with temperature and it increases considerably when the rotation velocity was increased. The protection potential decreases appreciably (shifts to more negative) with time and with increasing rotation velocity. Also it shifts to more positive with increasing temperature.
This research has been devoted to the objective and important issue which is the legal protection of the printing form of the newspaper in the Iraqi press.
As this issue constitutes the integrated unit of the printing format in addition to achieving legal protection for the illustrative image used in the press. Such matter, on both level the integrated unit of the printing format and the legal protection, is out of reach of study due to the comprehension of the subject is concerned.
Although there is a justification for dealing with both of them together as the explanatory image is one of the foundations on which the printing format of the newspaper is built. This case generates, at least, the same legal subject that appe
... Show MoreThe inverse kinematics of redundant manipulators has infinite solutions by using conventional methods, so that, this work presents applicability of intelligent tool (artificial neural network ANN) for finding one desired solution from these solutions. The inverse analysis and trajectory planning of a three link redundant planar robot have been studied in this work using a proposed dual neural networks model (DNNM), which shows a predictable time decreasing in the training session. The effect of the number of the training sets on the DNNM output and the number of NN layers have been studied. Several trajectories have been implemented using point to point trajectory planning algorithm with DNNM and the result shows good accuracy of the end
... Show MoreIn this paper, an approximate solution of nonlinear two points boundary variational problem is presented. Boubaker polynomials have been utilized to reduce these problems into quadratic programming problem. The convergence of this polynomial has been verified; also different numerical examples were given to show the applicability and validity of this method.
The aim of this paper is to present a method for solving third order ordinary differential equations with two point boundary condition , we propose two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by compared with conventional method .
A mixture of algae biomass (Chrysophyta, Cyanophyta, and Chlorophyte) has been investigated for its possible adsorption removal of cationic dyes (methylene blue, MB). Effect of pH (1-8), biosorbent dosage (0.2-2 g/100ml), agitated speed (100-300), particle size (1304-89μm), temperature (20-40˚C), initial dye concentration (20-300 mg/L), and sorption–desorption were investigated to assess the algal-dye sorption mechanism. Different pre-treatments, alkali, protonation, and CaCl2 have been experienced in order to enhance the adsorption capacity as well as the stability of the algal biomass. Equilibrium isotherm data were analyzed using Langmuir, Freundlich, and Temkin models. The maximum dye-sorption capacity was 26.65 mg/g at pH= 5, 25
... Show MoreApparent molar volume, V?, and viscosity B-coefficient of nicotinc acid in water and in aqueous NaCl solutions have been determined from density and viscosity measurements at (293.15, 298.15, 303.15 and 308.15) K. The experimental density data were evaluated by Masson equation, and the derived, apparent molar volume at infinite dilution, Vo?, and the slope Sv, were interpreted in term of solute-solvent and solute- solute interactions. Transfer apparent molar volumes at infinite dilution of nicotinic acid from water to NaCl solutions at various temperatures have been calculated.The viscosity data have been analyzed using Jones-Dole equation, and the derived parameters, Jones-Dolecoefficient, B,and Falkenhagen coefficient,A, have been also in
... Show More
