The performance of asphalt concrete pavement has affected by many factors, the temperature is the most important environmental one which has a large effect on the structural behavior of flexible pavement materials. The main cause of premature failure of pavement is the rutting, Due to the viscoelastic nature of the asphalt cement, rutting is more pronounced in hot climate areas because the viscosity of the asphalt binder which is
inversely related to rutting is significantly reduced with the increase in temperature resulting in a more rut susceptible paving mixtures. The objective of this study is to determine the effect of temperatures variations on the permanent deformation parameters (permanent strain (p), intercept (a), slope (b), Alpha and Mu) as well as resilient strain (r) and resilient modulus (Mr). To achieve this objective, one aggregate gradation with 12.5mm nominal maximum size, two grades of asphalt cements (40-50 and 60-70) brought form Al- Daurah refinery, limestone dust filler has been used to prepare the asphalt concrete mixtures. 30 Marshall specimens were prepared to determine the optimum asphalt cement content. Thereafter, 30 cylindrical asphalt concrete specimens (102mm in diameter and 203 mm in height) are prepared in optimum asphalt cement and optimum ±0.5 percent. The prepared specimens were used in uniaxial repeated load test to evaluate the permanent deformation parameters of asphalt concrete mixes under the following testing temperature (5, 15, 25, 40 and 60c). The test result analyses appeared that Mr is decrease 51 percent when temperature increased from 5 c to 25 c and then decrease 22 percent with further increase in temperature from 25 c to 60 c. Also, the Alpha value decreases by a factor of 1.25 and 1.13 when temperature increases from 5 c to 25 c and 25 c to 60 c, espectively.
Finally, statistical models were developed to predict the Alpha and Mu parameters of permanent deformation.
In this research, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). An optimization procedure using reflective (~85%) InSb etalon (~50µm) thick is described. For this etalon with a (50 µm) spot diameter beam, the minimum switching power is (~0.078 mW) and switching time is (~150 ns), leading to a switching energy of (~11.77 pJ) for this device. Also, the main role played by the temperature to change the etalon characteristic from nonlinear to linear dynamics.
A metal mandrel was designed for manufacturing the cathodes of high power electron tube ( Tetrode ) used in broadcasting transmitting tubes type TH558 and CQS200.The cathodes were manufactured in the present work from thoriated tungsten wires ( 2? ThO2- W) with different diameters .These cathodes were carbonized in sequences of processes to determine the carbonization parameters (temperature, pressure, time, current and voltage).Then the carbonized cathodes dimension were accurately measured to determine the deviation due to the high temperature distortion effect at about 1800°C .the distorted cathodes due to the carbonization process was treated when it was subjected inside the vacuum chamber and heat treated again .The carbonized cat
... Show MoreA nanocrystalline CdS thin film with 100 nm thickness has been prepared by thermal evaporation technique on glass substrate with substrate temperature of about 423 K. The films annealed under vacuum at different annealing temperature 473, 523 and 573 K. The X-ray diffraction studies show that CdS thin films have a hexagonal polycrystalline structure with preferred orientation at (002) direction. Our investigation showed the grain size of thin films increased from 9.1 to 18.9 nm with increasing the annealing temperature. The optical measurements showed that CdS thin films have direct energy band gap, which decreases with increasing the annealing temperature within the range 3.2- 2.85 eV. The absorbance edge is blue shifted. The absorption
... Show MoreSawa Lake is one of the unique lakes in Iraq. It is located in the southwestern part of Iraq. It is one of the closed lakes, as no surface water source works to feed the lake. The lake feeds on groundwater. The source of this groundwater is the Dammam Basin. During the past ten years, The lake has had many changes, which led to a decrease in water levels. This also led attention to study of the causes of these changes. Many types of research were presented in the study of the state of the lake. This research used remote sensing images from Landsat 8 OLI to monitor the changes during 2020-2021 by applying the NDWI equation to extract water area from image data. The results of the areas were obtained from a special report by Normalized Dif
... Show MoreThis paper develops a nonlinear transient three-dimensional heat transfer finite element model and a rate independent three-dimensional deformation model, developed for the CO2 laser welding simulations in Al-6061-T6 alloy. Simulations are performed using an indirect coupled thermal-structural method for the process of welding. Temperature-dependent thermal properties of Al-6061-T6, effect of latent heat of fusion, and the convective and radiative boundary conditions are included in the model. The heat input to the model is assumed to be a Gaussian heat source. The finite element code ANSYS12, along with a few FORTRAN subroutines, are employed to obtain the numerical results. The benefit of the proposed methodology is that it
... Show MoreRapid worldwide urbanization and drastic population growth have increased the demand for new road construction, which will cause a substantial amount of natural resources such as aggregates to be consumed. The use of recycled concrete aggregate could be one of the possible ways to offset the aggregate shortage problem and reduce environmental pollution. This paper reports an experimental study of unbound granular material using recycled concrete aggregate for pavement subbase construction. Five percentages of recycled concrete aggregate obtained from two different sources with an originally designed compressive strength of 20–30 MPa as well as 31–40 MPa at three particle size levels, i.e., coarse, fine, and extra fine, were test
... Show MoreThe determination of critical micelle concentration of selected non-ionic surfactants (Tween 20,40 and 80) have been investigated using magnetic water(MW)as an aqueous medium.Conductometry technique is used to determine critical micelle concentration.The effect of alcohol addition and temperature variation at the range(293.15 -303.15K) are also pursued. It is concluded that the process of micellization is spontaneous and endothermic because of the observed free energy of micellization (ΔGom) , enthalpy change of micellization (ΔHom), and entropy change of micellization (ΔSom) for the system was also studied.The properties of the non-ionic surfactants were studied, both in absence and presence of
... Show MoreSeveral million tons of solid waste are produced each year as a result of construction and demolition activities around the world, and brick waste is one of the most widely wastes. Recently, there has been growing number in studies that conducted on using of recycling brick waste (RBW) to produce environmentally friendly concrete. The use of brick waste (BW) as potential partial cement or aggregate replacement materials is summarized in this review where the performance is discussed in the form of the mechanical strength and properties that related to durability of concrete. It was found that, because the pozzolanic activity of clay brick powder, it can be utilized as substitute for cement in replacement level up to 10%. Whereas,
... Show More