Preferred Language
Articles
/
joe-1919
Influence of Some Additives on the Efficiency of Viscosity Index Improver for Base Lubricating Oils
...Show More Authors

The effects of three different additives formulations namely Lubrizol 21001, HiTEC 8722B and HiTEC 340 on the efficiency of VII namely OCP of three base lubricating oils namely 40 stock and 60 stock and 150 stock at four temperatures 40, 60, 80 and 100oC were investigated. The efficiency of OCP is decreased when blended with 4 and 8 wt% of Lubrizol 21001 for all the three base oil types. But it is increased when adding 4 wt% and 8 wt% of H-8722B in 40 stock. While for 60 stock and 150 stock the OCP efficiency decreased by adding 4 and 8 wt% of H-8722B. In the other hand, it is decreased with a high percentage by adding 4 and 8 wt% of H-340 for 60 stock and 150 stock and for 40 stock it is increased by adding 4 wt% of H-340 and decreased with insignificant percentage when adding 8 wt%. Finally, a number of VI correlations have been obtained depending on the results predicted in this study. These correlations represent the functional relationships between the VI and the concentration of OCP for three types of base lubricating oil and for each type of additives.
Keywords: Lubricating oil, Kinematic Viscosity, Viscosity

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Sep 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
A Comparative Study of the Influence of Different Types of Polymers on Viscosity Index and Pour Point of Iraqi Base Oils
...Show More Authors

In this study, the effects of blending the un-branched acrylate polymer known as Poly (n-decyl acrylate), and the branched acrylate polymer known as Poly (iso-octyl acrylate), on the viscosity index (VI), and the pour point of the Iraqi base stocks 40, and 60 respectively, were investigated. Toluene was used as a carrier solvent for both polymer types. The improvement level of oils (VI, & pour point) gained by blending the oil with the acrylate derived polymers was compared with the values of (VI, and pour point) gained by blending the oil with a commercial viscosity index, and pour point improver. The commercial lubricant additive was purchased and used by Al-Daura Refineries. It consisted of an un-known olefin copolymer dissolved i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
Synthesis, Characterization and Evaluation of Some Pyranopyrazole Derivatives as Multifunction Additives for Medium Lubricating Oils
...Show More Authors

      The current work involves synthesis of 6-amino-4-(4-hydroxyl-3-methoxyphenyl)-3-methyl-1-phenyl-1,4- dihydropyrano[2,3-c]pyrazole-5-carbonitrile (2) by condensation of 2-(4-hydroxyl-3-methoxybenzylidine) malononitrile (1) with 3-methyl-1-phenyl-2-pyrazolin-5-one. The product 2 was then reacted with various aldehydes to form a series of Schiff base derivatives 3a-h. The reaction of the chosen Schiff base derivatives (3a and 3b) with mercaptoacetic acid gave thiazolidinone derivatives (4a and 4b). The structures of prepared compounds were confirmed using FT-IR, 1H NMR, and 13

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (2)
Scopus Crossref
Publication Date
Wed Apr 07 2021
Journal Name
Egyptian Journal Of Chemistry
Copolymers of Castor and Corn Oils with Lauryl Methacrylate as Green Lubricating Additives
...Show More Authors

During the last few years, the greener additives prepared from bio-raw materials with low-cost and multifunctional applications have attracted considerable attention in the field of lubricant industry. In the present work, copolymers derived from sunflower and linseed oils with decyl methacrylate were synthesized by a thermal method using benzoyl peroxide (BPO) as a radical initiator. Direct polymerization of fatty acid double bonds in the presence of a free radical initiator results in the development of environmentally friendly copolymeric additives (Co-1 and Co-2). Fourier Transform Infrared (FTIR) and Proton Nuclear Magnetic Resonance (1H-NMR) were used to characterize the resulting copolymers. Thermal decomposition of copolymers was de

... Show More
View Publication Preview PDF
Scopus (8)
Scopus Clarivate Crossref
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Effect of Solvent Extraction of Light Lubricating Oil on Viscosity Index and Chemical Composition
...Show More Authors

An investigation was conducted for the improvement of viscosity index of light lubricating oil fraction (40 stock)
obtained from vacuum distillation unit of lube oil plant of Daura Refinery, using solvent extraction process.
In this study furfural solvent was used to extract the undesirable materials which reduce the viscosity index of raw
lubricating oil fraction.
The studied effecting variables of extraction were extraction temperature range from 70 to 110°C, and solvent to oil
ratio range from 1:1 to 4:1 (wt/wt).
The n-d-M method was used for calculation of carbon distribution and structural group analysis of the raffinate
produced from furfural extraction.
Also the three component phase diagram for a mixed-ba

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 30 2008
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Viscosity Index Improvement of Lubricating Oil Fraction (SAE – 30)
...Show More Authors

An investigation was conducted for the improvement of viscosity index of a lubricating oil fraction (SAE – 30) obtained from vacuum distillation unit of lube oil plant of Daura Refinery, using solvent extraction process. In this study two type of extraction solvents were used to extract the undesirable materials which reduce the viscosity index of raw lubricating oil fraction, the first solvent was furfural which is un use today in the Iraqi refineries and the second was NMP (N-methyl, 2, pyrrolidone) which is used for the first time in this work to extract the lubricating oil fraction produced from Iraqi crude oils. The studied effecting variables of extraction are extraction temperature range from 70 to 110 oC for furfural and NMP ex

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 08 2023
Journal Name
Iraqi Journal Of Science
Synthesis, Characterization and Evaluation of Some Pyranopyrazoles and Pyranopyrimidines Derivatives as Antioxidants for Lubricating Oils
...Show More Authors

6-Amino-4-(4-hydroxyphenyl)-5-cyano-3-methyl-1-phenyl-1, 4-dihydropyrano [2,3-c] pyrazole (compound 2) was prepared by condensation of 2-(4-hydroxylbenzylidine) malononitrile (compound 1) [which was prepared by Knoevenagel condensation of malononitrile with 4-hydroxy benzaldehyde ] with 3-methyl-1-phenyl-2-pyrazolin-5-one. Reactions of compound 2 with different reagents formic acid, formamide, and ammonium thiocyanate under microwave irradiation leads to the synthesis of 4-(4-hydroxyphenyl)- 3-methyl-1-phenyl-4,6-dihydro- pyrazolo [3', 4':5,6] pyrano [2,3-d] pyrimidine-5-one (compound 3), 4-(4-hydroxyphenyl)- 3-methyl-1-phenyl-4, 6-dihydro- pyrazolo [3', 4':5,6]pyrano[2,3-d]pyrimidine-5-imine (compound 4) and N-[4-(4-hydroxyphenyl)- 3-me

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Effect of Extraction Temperature and Solvent to Oil Ratio on Viscosity Index of Mixed-medium Lubricating Oil Fraction by Using Solvents Extraction
...Show More Authors

In this study two types of extraction solvents were used to extract the undesirable polyaromatics, the first solvent was furfural which was used today in the Iraqi refineries and the second was NMP (N-methyl-2-pyrrolidone).
The studied effecting variables of extraction are extraction temperature ranged from 70 to 110°C and solvent to oil ratio in the range from 1:1 to 4:1.
The results of this investigation show that the viscosity index of mixed-medium lubricating oil fraction increases with increasing extraction temperature and reaches 107.82 for NMP extraction at extraction temperature 110°C and solvent to oil ratio 4:1, while the viscosity index reaches to 101 for furfural extraction at the same extraction temperature and same

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 01 2020
Journal Name
Iraqi Geological Journal
THE EFFECT OF SOME MATERIALS ON FUNNEL VISCOSITY READING IN WATER BASE MUD
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
2nd International Conference On Materials Engineering & Science (iconmeas 2019)
Viscosity reduction of Iraqi crude oil by different additives
...Show More Authors

The high viscosity of heavy oil is a crucial factor that strongly affects its up-stream recovering, down-stream surface transporting and refining processes. Economical methods for recovering the heavy oil and reducing is very important and related to capital and/or operating cost. This research studies the treatment of Iraqi heavy crude oil, which characterize with high viscosity and low API which makes transportation of heavy crude oil a difficult mission, needs for treatment to reduce viscosity for facilitating transportation and processing. Iraqi heavy crude oil was used Sharqi Baghdad, which obtained from Baghdad east oil fields with API 22.2º.Many kinds of additives were used to reduce the viscosity, experiments were performed o

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jan 05 2022
Journal Name
Iraqi Journal Of Science
Effect of Additives on Impact Strength of Denture Base Resin
...Show More Authors

This research has studied the effect of addition glass fibers (woven and chopped)
and Zirconium oxide Nano-particles (ZrO2) with different weight percent to the
conventional poly (methyl methacrylate) (PMMA). The prepared Nano-crystalline
ZrO2 powder with particle size of about 95nm was syntheses directly by sol-gel
method. The gel dried at 100oC for 1 hour and annelid at 400oC for 3 hours.
The conventional acrylic resin prepared with 2:1 powder to liquid ratio to prepare
pure sample, composite samples prepared by reinforcing PMMA with woven or
chopped glass fiber (8, 12) wt.%, and reinforcing by (1,2,3) wt.% of prepared ZrO2
Nano-powder.
The structural tests include: (XRD, AFM, and FTIR). The crystallized phas

... Show More
View Publication Preview PDF