The performance of asphalt concrete pavement has affected by many factors, the temperature is the most important environmental one which has a large effect on the structural behavior of flexible pavement materials. The main cause of premature failure of pavement is the rutting, Due to the viscoelastic nature of the asphalt cement, rutting is more pronounced in hot climate areas because the viscosity of the asphalt binder which is
inversely related to rutting is significantly reduced with the increase in temperature resulting in a more rut susceptible paving mixtures. The objective of this study is to determine the effect of temperatures variations on the permanent deformation parameters (permanent strain (p), intercept (a), slope (b), Alpha and Mu) as well as resilient strain (r) and resilient modulus (Mr). To achieve this objective, one aggregate gradation with 12.5mm nominal maximum size, two grades of asphalt cements (40-50 and 60-70) brought form Al- Daurah refinery, limestone dust filler has been used to prepare the asphalt concrete mixtures. 30 Marshall specimens were prepared to determine the optimum asphalt cement content. Thereafter, 30 cylindrical asphalt concrete specimens (102mm in diameter and 203 mm in height) are prepared in optimum asphalt cement and optimum ±0.5 percent. The prepared specimens were used in uniaxial repeated load test to evaluate the permanent deformation parameters of asphalt concrete mixes under the following testing temperature (5, 15, 25, 40 and 60c). The test result analyses appeared that Mr is decrease 51 percent when temperature increased from 5 c to 25 c and then decrease 22 percent with further increase in temperature from 25 c to 60 c. Also, the Alpha value decreases by a factor of 1.25 and 1.13 when temperature increases from 5 c to 25 c and 25 c to 60 c, espectively.
Finally, statistical models were developed to predict the Alpha and Mu parameters of permanent deformation.
This study aims to identify maternal death cases caused by Coronavirus infection 2019 pneumonia, including disease progression, fetal consequences, and the fatality cause.
Patients and methodology: A retrospective case collection of Iraqi pregnant women in their second and third trimesters diagnosed with COVID-19 pneumonia and died due to it.
The four cases were all of a young age, had a brief complaint period, and had no comorbidities. Fever, dyspnea, and fatigue were the most common symptoms. Hypoxia was present in all cases and was the cause of mortality in three cases, with thromboembolism being a potential cause in the fourth. Prelabour membrane breakup, fetal growth restriction, and fetal death are al
... Show MoreIn this work, PAni nanofibers (NFs) are successfully synthesized via hydrothermal method. The structural, surface morphological, optical, electrical and H2S gas sensing properties have been investigated for PAni thin films deposited by spin coating technique. The XRD pattern reveals crystalline nature of PAni NFs with crystallite size of 9.2 nm. The SEM image of Polyaniline clearly indicates that the polymer possesses nanofiber like structure. The optical properties show that the optical energy gap follows allowed direct electronic transition calculated using Tauc’s equation. Intense hotoluminescence (PL) peaks at 309, 340 and 605 nm are observed. The electrical properties such as D.C. conductivity and Hall effect have been studied wher
... Show MorePlace is considered one of the important artistic elements in the movie through which the events occur in different arts and literatures and with its absence there isn’t any that can initiate events. Place is important for the things that we recognize, and the first fact in cinema is the place which can't be dispensed with on the level of the film or scene or cinematic shot that can't be emptied from its spatial content. The characters are always there in a place occupying some space of it, despite that it is not merely a container for the event cinematically. The researcher views the importance of discovering and observing them in this research which is divided into four chapters as follows: (theoretical framework) which includes the
... Show MoreThe aim of this research is to design and construct a semiconductor laser range finder
operating in the near infrared range for ranging and designation. The main part of the range finder is the
transmitter which is a semiconductor laser type GaAs of 0.904 mm wavelength with a beam expander,
and the receiver with its collecting optics. The characteristics of transmitter pulse width were 200ns and
threshold current 10 Amp. and maximum operating current 38 Amp. The repetition rate was set at 660 Hz
and maximum output power about 1 watt. The divergence of the beam was 0.268o. A special computer
code was used for optimum optical design and laser spot size analysis and for calculation of atmosphere
attenuation.
The use of silicon carbide is increasing significantly in the fields of research and technology. Topological indices enable data gathering on algebraic graphs and provide a mathematical framework for analyzing the chemical structural characteristics. In this paper, well-known degree-based topological indices are used to analyze the chemical structures of silicon carbides. To evaluate the features of various chemical or non-chemical networks, a variety of topological indices are defined. In this paper, a new concept related to the degree of the graph called "bi-distance" is introduced, which is used to calculate all the additive as well as multiplicative degree-based indices for the isomer of silicon carbide, Si2
... Show MoreAn assembled pulsed Nd:YAG laser-robot system for spot welding similar and dissimilar metals is presented in this paper. The study evaluates the performance of this system through investigating the possibility and accuracy of executing laser spot welding of 0.2 mm in thickness stainless steel grade AISI302 to 0.5 mm in thickness low carbon steel grade AISI1008. The influence of laser beam parameters (peak power, pulse energy, pulse duration, repetition rate, and focal plane position on the final gained best results are evaluated. Enhancement of the experimental results was carried by a computational simulation using ANSYS FLUENT 6.3 package code.
Abstract
The environmental conditions are important factors, because they affect both the efficiency of a photovoltaic module and the energy load. This research was carried out experimentally and modeling was done in MATLAB –Simulink by monitoring the variation in power output of the system with environmental conditions such as solar radiation, ambient temperature, wind speed, and humidity of Baghdad city. From the results, the ambient temperatures are inversely proportional to humidity and the output power performance of the system, while the wind speed is directly proportional with the output power performance of the system.
Keywords:
... Show More