Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's performance was evaluated, and tests were run. Line-to-ground faults were examined. The study demonstrates how effective, rapid, and precise this method is at locating faults. The neural network's performance was examined, and tests were run on it. The overall performance of the mean square error in the trained network execution was 0.11792 at 35 epochs. The correlation coefficient at the entire target was 0.99987 percent of an error on the Doukan-Erbil double transmission lines.
Abstract Background: Dne of the key component of nasal tipplasty is effecter control of naral tip projection. Several cartilage grafts have been decreased for this purpose each had its own advantage and disadvantage. Aim: To evaluate using of double teostrut graft for controlling of tip projection. Patients and Methods: A total number of 170 patients were subjected to primary and secondary rhino plaster between January 2020 to January 2023. Those patients had double Teostrut banner graft for support of their nasal tip and maintaining tip projection after operation. Results: The follow period was ranging between 6-12 months. The shape of the nose was evaluating by patents vernal analogues scale. The average score for patients satisfaction wa
... Show MoreIn this study, the results of x-ray diffraction methods were used to determine the Crystallite size and Lattice strain of Cu2O nanoparticles then to compare the results obtained by using variance analysis method, Scherrer method and Williamson-Hall method. The results of these methods of the same powder which is cuprous oxide, using equations during the determination the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (28.302nm) and the lattice strain (0.03541) of the variance analysis method respectively and for the Williamson-Hall method were the results of the crystallite size (21.678nm) and lattice strain (0.00317) respectively, and Scherrer method which gives the value of c
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MorePermeability is an essential parameter in reservoir characterization because it is determined hydrocarbon flow patterns and volume, for this reason, the need for accurate and inexpensive methods for predicting permeability is important. Predictive models of permeability become more attractive as a result.
A Mishrif reservoir in Iraq's southeast has been chosen, and the study is based on data from four wells that penetrate the Mishrif formation. This study discusses some methods for predicting permeability. The conventional method of developing a link between permeability and porosity is one of the strategies. The second technique uses flow units and a flow zone indicator (FZI) to predict the permeability of a rock mass u
... Show MoreWere arranged this study on two sections, which included first section comparison between markets proposed through the use of transport models and the use of the program QSB for less costs , dependant the optimal solution to chose the suggested market to locate new market that achieve lower costs in the transport of goods from factories (ALRasheed ,ALAmeen , AlMaamun ) to points of sale, but the second part has included comparison of all methods of transport (The least cost method ,Vogels method , Results Approximations method , Total method) depending on the agenda of transport, which includes the market proposed selected from the first section and choose the way in which check the solution first best suited in terms
... Show MoreNet pay is one of the most important parameters used in determining initial oil in place of a reservoir. It can be delineated through the using of limiting values of the petrophysical properties of the reservoir. Those limiting values are named as the cutoff. This paper provides an insight into the application of regression line method in estimating porosity, clay volume and water saturation cutoff values in Mishrif reservoir/ Missan oil fields. The study included 29 wells distributed in seven oilfields of Halfaya, Buzurgan, Dujaila, Noor, Fauqi, Amara and Kumait.
This study is carried out by applying two types of linear regressions: Least square and Reduce Major Axis Regression.
The Mishrif formation was
... Show MoreThis paper presents a study of wavelet self-organizing maps (WSOM) for face recognition. The WSOM is a feed forward network that estimates optimized wavelet based for the discrete wavelet transform (DWT) on the basis of the distribution of the input data, where wavelet basis transforms are used as activation function.
A common field development task is the object of the present research by specifying the best location of new horizontal re-entry wells within AB unit of South Rumaila Oil Field. One of the key parameters in the success of a new well is the well location in the reservoir, especially when there are several wells are planned to be drilled from the existing wells. This paper demonstrates an application of neural network with reservoir simulation technique as decision tool. A fully trained predictive artificial feed forward neural network (FFNNW) with efficient selection of horizontal re-entry wells location in AB unit has been carried out with maintaining a reasonable accuracy. Sets of available input data were collected from the exploited g
... Show MoreThe manual classification of oranges according to their ripeness or flavor takes a long time; furthermore, the classification of ripeness or sweetness by the intensity of the fruit’s color is not uniform between fruit varieties. Sweetness and color are important factors in evaluating the fruits, the fruit’s color may affect the perception of its sweetness. This article aims to study the possibility of predicting the sweetness of orange fruits based on artificial intelligence technology by studying the relationship between the RGB values of orange fruits and the sweetness of those fruits by using the Orange data mining tool. The experiment has applied machine learning algorithms to an orange fruit image dataset and performed a co
... Show More