Numerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhances by applying the compound technique at all the working fluid's temperatures and flow rate ranges. The maximum increase in overall heat transfer coefficient occurs at an angle of 30° and the resonance frequency. Moreover, the effectiveness of the double pipe heat exchanger gradually expanded when temperature, inclination angles, and vibration amplitude rosed. But the effectiveness value declined as the hot working flow rate increased considerably. Finally, the enhancement factor demonstrated that the combined strategy (vibration frequencies and inclination angles) had been the most effective technique in improving and enhancing heat transfer and was superior to the other ways. Additionally, the extremes improvement in overall heat transfer coefficient, effectiveness, and enhancement factor are 183.4, 191, and 164.4 %. The improvement was situated at the resonance frequency with a 30° inclination angle.
In the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show MoreThis paper deals with numerical study of the flow of stable and fluid Allamstqr Aniotina in an area surrounded by a right-angled triangle has touched particularly valuable secondary flow cross section resulting from the pressure gradient In the first case was analyzed stable flow where he found that the equations of motion that describe the movement of the fluid
The Rate theory of crack growth in PVC pipe has been studied for creep and fatigue crack propagation. Rate theory function parameters, (RTFP), were estimated theoretically from exponential function parameters, (EFP), to experimental data of crack velocity versus stress intensity factor ,(V-K) diagram, to creep crack propagation . Also (RTFP) were estimated theoretically from (EFP) to experimental data of (V-?K) diagram to fatigue crack propagation. Temperature effect with (RTFP) was discussed. Crack velocity function denoted with stress intensity factor and temperature degrees has been determined to fatigue and creep crack propagation theoretically and comparative results this function with experimental data of (V-K or ?K) diagram .
To reduce solar radiation transmittance into buildings through windows facing east or west during summer, a window inclination from vertical position is suggested. The inclination of the window glazing and the rate of unwanted solar radiation during summer can be calculated knowing the dialy inclination of the sun rays. The inclination of window glazing depends on the latitude of the position required. For instance in Baghdad which is at about 33o north latitude a slope of 15o for window glazing is sufficient to prevent about 419 MJ/m2 of total solar radiation energy from penetration during summer for clear glazing of window facing east. This value drops to about 96 MJ/m2 during winter. Therefore the ratio between the energy saved for co
... Show MoreThe current study suggested a thermal treatment as a necessary proactive step in improving the adsorption capacity of bio-waste for contaminants removal in wastewater. This approach was based on the experimental and histological investigation of biowaste pods shell. This investigation showed that these shells compose of parenchyma cells that store secondary metabolites compounds produced from cells were exhibited in present study. The results also reported that these compounds are extracted directly from the cells as soon as they are exposed to an aqueous solution, hampering their use as an adsorbent material. The increase in the weight of bio-waste adsorbent at unit liquid volume increases the production of secondary metabolites compounds
... Show MoreABSTRACT Background:Hydrogen absorption and related degradation in the mechanical properties of Ni-Ti based orthodontic wires has been demonstrated following exposure to fluoride prophylactic agents. This study was designed to investigate the effects of three fluoride containing agents on the load deflection characteristics of heat activated nickel titanium arch wires during unloading phase. Material and method: Eighty specimens of heat activated nickel titanium arch wires were obtained from Ortho Technology Company, half of which had a 0.016 inch round and 0.019x0.025 rectangular. Ten specimens from both wire size were immersed in one of the tested fluoride prophylactic agents (neutral sodium fluoride gel, stannous fluoride gel or phos-flu
... Show MoreBackground: Acrylic resin polymer s used in prosthodontic treatment as a denture base material for several decades. Separation and debonding of artificial teeth from denture bases present a laboratory and clinical problem affect patient and dentist. The aim of this study is to evaluate the effect of oxygen plasma and argon plasma treatment of acrylic teeth and thermocycling on bonding strength to hot cured acrylic resin denture base material. Materials and Methods: Sixty denture teeth (right maxillary central incisor) are selected. The denture teeth are waxed onto the beveled surface of rectangular wax block according to Japanese standard for artificial teeth. The control group consisted of 20 denture teeth specimen without any treatment.
... Show MoreExperimental investigation for small horizontal portable wind turbine (SHPWT) of NACA-44, BP-44, and NACA-63, BP-63 profiles under laboratory conditions at different wind velocity range of (3.7-5.8 m/s) achieved in present work. Experimental data tabulated for 2, 3, 4, and 6- bladed rotor of both profiles within range of blade pitch angles . A mathematical model formulated and computer Code for MATLAB software developed. The least-squares regression is used to fit experimental data. As the majority of previous works have been presented for large scale wind turbines, the aims were to present the performance of (SHPWT) and also to make a comparisons between both profiles to conclude which is the best performance. The overall efficiency and el
... Show MorePultruded materials made of Fiber-Reinforced Polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, etc. FRP materials are starting to compete with steel as structural materials owing to their great resistance, low self-weight, and cheap maintenance costs, especially in corrosive conditions. This study aims to evaluate the effectiveness of a novel concrete Composite Column (CC) using Encased I-Section (EIS) as a reinforcement in contrast to traditional steel bars by using Glass Fiber-Reinforced Polymer (GFRP) as I-section (CC-EIS) to evaluate the effectiveness of the hybrid columns which have been built by combining GFRP profiles with concrete columns. To achieve the aims of this study, nine circular co
... Show More