Low- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loading and unloading paths experienced from the tensile test. Considering the effect of different parameters on the damping properties, such as heat treatment temperatures, cooling rates, and carbon content, the results show that the damping properties in the annealing process at different temperatures have interesting damping properties, among other processes. Also, the highest damping energy for the annealing cooling scheme was attained at a heating temperature of 1050 ˚C, irrespective of the carbon content. Finally, better damping properties for the medium carbon content of (0.299%C) is achieved for all types of heat treatment process compared with a low carbon content of (0.188% C); and, in general, with increasing carbon content from medium to low, steel response to heat treatment increases and better damping properties are obtained.
Steady natural convection in a square enclosure with wall length (L= 20 cm) partially filled by saturated porous medium with same fluid (lower layer) and air (upper layer) is investigated. The conceptual study of the achievements of the heat transfer is performed under effects of bottom heating by constant heat flux (q=150,300,450,600W/m2 ) for three heaters size (0.2,0.14,0.07)m with symmetrically cooling with constant temperature on two vertical walls and adiabatic top wall. The relevant filled studied parameters are four different porous medium heights (Hp=0.25L,0.5L, 0.75L, L), Darcey number (Da1) 3.025×10-8 and (Da2) 8.852×10-4 ) and Rayleigh number range (60.354 - 241.41), (1.304×106 – 5.2166×106 ) for Da1 and Da2 cases respecti
... Show MoreDuring the 2016–2017 and 2017–2018 winter semesters, researchers from the College of Agricultural Engineering Sciences at the University of Baghdad conducted a field experiment at the university’s research station. This inquiry set out to examine how spraying wheat plants with vitamins B9 (Folic acid) and E (Tocopherol) affected certain yield characteristics (Al-Fourat variety). The studies were set up as three repetitions of a factorial experiment using a Randomized Full Block Design. Vitamin E was sprayed at 0, 1, and 2 ml.L-1, while vitamin B9 was sprayed at 0, 1, and 3 ml.L-1 (0, 250, and 500 mg. L-1). While the
Aluminum oxide thin films were prepared by dc reactive sputtering technique using different mixing ratios of argon and oxygen gases (90:10, 70:30, 50:50, 30:70, and 10:90). These films were characterized to introduce their crystalline structures, surface morphology, and elemental composition. A progressive transition occurs from a predominantly amorphous to a highly crystalline Al2O3 film as the oxygen content in the Ar:O2 gas mixture is increased. Increasing the oxygen content leads to a progressive decrease in surface roughness, resulting in smoother and more uniform films with finer granular features. The oxygen-rich environments yield the smoothest surfaces, while argon-rich environments result in significantly rougher surfaces. These f
... Show MoreThis research examines the use of vibratory treatments to reduce residual stresses in small welded parts. In this experimental investigation, a post weld vibration treatment was applied to T- A106 steel pipe fitting specimens to study the effect of the treatment on the residual stress and the hardness of the material. The vibratory stress relief treatment was carried out at different vibration frequency. The results have demonstrated that post-weld vibratory stress relief of small size fittings is possible and residual stress may be relieved, and the treatment may be an alternative method for heat treatment especially when unchange in dimensions and material stability are required.
This research aims to investigate the thermal performance of different thermal composite insulators, wrapped around a closed-loop copper pipe (CLP). To achieve this aim a system was designed and manufactured. It is consisted of closed water tank insulated by Rock Wool, and supplied with two electric heaters, two thermostat, a flow meter, a water pump, digital temperature scales, and four series of (CLP).
Six insulators were prepared namely; composites of Impregnated Fiberglass with Elastoclad and foaming Rubber (FER), Impregnated Fiberglass with Elastoclad resin and Polymeric Membrane (FEM), Impregnated Fiberglass with Polyurethane thermoset resin and Foaming Rubber (FUR), Impregnated Fiberglass with Polyurethane thermoset resin and P
THE EFFECT OF SPREACL of KNOWLEDGE ON ETHICS
Composting is one of the solid waste management (SWM) methods where the organic component decomposed biologically under controlled conditions. In this study, a 0.166 m3 bioreactor tank was designed to compose 59.2Kg of simulated common municipal solid food waste having a bulk density, organic matter, organic carbon, pH, nitrogen content, C/N and nitrification index (NH4-N/ NO3-N) of 536.62 kg/m3, 62.34%, 34.76%, 6.53, 1.86%, 23 and 0.34 respectively. The bioreactor operated aerobically for 30 days, and anaerobically for 70 days, until the end of the composting process. Results proved that the composting process could reduce the mass of the waste by 69%. Nitrogen content,
... Show More