A large amount of thermal energy is generated from burning hazardous chemical wastes, and the temperature of the flue gases in hazardous waste incinerators reaches up to (1200 °C). The flue gases are cooled to (40°C) and are treated before emission. This thermal energy can be utilized to produce electrical power by designing a system suitable for dangerous flue gases in the future depending on the results of much research about using a proto-type small steam power plant that uses safe fuel to study and develop the electricity generation process with water tube boiler which is manufactured experimentally with theoretical development for some of its parts which are inefficient in experimental work. The studied system generates theoretically (120 kg steam /h at 8 bars) with dry wood as fuel and preheating for the air of combustion and feed water and a diesel engine of (8 hp) four-stroke with single piston converted to steam engine coupled with the electrical generator of (3 kVA). The results are compared with practical values valid in the literature about small power plants of steam capacity (0.1-1) ton/h and operating pressure up to 10 bars. Experimentally, the generated electrical power is little and sufficient to operate a small fan and lump. The current converted steam engine is better than a conventional steam engine in auto lubrication with some operational problems. The boiler efficiency is 63.28%.
In this work, the possibility of a multiwavelength mode-locked fiber laser generation based on Four-Wave Mixing (FWM) induced by Fe2O3-SiO2 nanocomposite material is investigated for the first time. A multiwavelength mode-locked pulses fiber laser are generated from Ytterbium–doped fiber laser (YDFL) due to the combined action of high nonlinear absorption and high refractive coefficients of Fe2O3-SiO2 nanocomposite incorporated inside YDFL ring cavity. Up to more than 20 lasing lines in the 1040–1070 nm band with an equally lines separation of ~0.6 nm have been observed by just simple variation of passive modulation of the state of the polarization and the pump power altogether. Moreover, a passively mode-locked operation of YDFL laser
... Show MoreThe skill high-jump scoring is based on mechanical and physical abilities. The most important of all is the strength used by the player from the moment of preparation to the moment of scoring, which led the researchers to study the characteristics of the series of power chain functions of this skill according to (Biosyn System) The players of the national team's back line have a handball to find out the relationship between the properties of the power chain curve and the accuracy of the high jump to the upper and lower target angles. The aim of the research was to identify the values of the Force Series variables for the skill of the high-jump curve of the handball as well as the relationship between the properties of the power chain functi
... Show MoreIn Iraq most of the small buildings deployed a conventional air conditioning technology which typically uses electrically driven compressor systems which exhibits several clear disadvantages such as high energy consumption, high electricity at peak loads. In this work a thermal performance of air conditioning system combined with a solar collector is investigated theoretically. The hybrid air conditioner consists of a semi hermetic compressor, water cooled shell and tube condenser, thermal expansion valve and coil with tank evaporator. The theoretical analysis included a simulation for the solar assisted air-conditioning system using EES software to analyze the effect of different parameters on the power consumption of c
... Show MoreThe research deals with solar energy as one of the sources of renewable energies available in Iraq, which can be utilized. The research aims to identify the design pillars of the use of solar energy in street furniture and its relationship to formal variables. The research limits included street furniture manufactured by JCDecaux in Boston during the period 2015-2016, and included the theoretical framework which consists of two sections: solar energy (its beginnings and uses), and solar energy and its uses in Street furniture design.
As far as the research procedures and methodology are concerned, it adopted the descriptive approach in describing and analyzing the sample models in addition to describing and analyzing the sample i
... Show MoreUniversity campuses in Iraq are substantial energy consumers, with consumption increasing significantly during periods of high temperatures, underscoring the necessity to enhance their energy performance. Energy simulation tools offer valuable insights into evaluating and improving the energy efficiency of buildings. This study focuses on simulating passive architectural design for three selected buildings at Al-Khwarizmi College of Engineering (AKCOE) to examine the effectiveness of their cooling systems. DesignBuilder software was employed, and climatic data for a year in Baghdad was collected to assess the influence of passive architectural strategies on the thermal performance of the targeted buildings. The simulations revealed that the
... Show MoreThe Invar effect in 3D transition metal such as Ni and Mn, were prepared on a series composition of binary Ni1-xMnx system with x=0.3, 0.5, 0.8 by using powder metallurgy technique. In this work, the characterization of structural and thermal properties have been investigated experimentally by X-ray diffraction, thermal expansion coefficient and vibrating sample magnetometer (VSM) techniques. The results show that anonymously negative thermal expansion coefficient are changeable in the structure. The results were explained due to the instability relation between magnetic spins with lattice distortion on some of ferromagnetic metals.
In the present work is the deposition of copper oxide using the pulsed laser deposition technique using Reactive Pulsed Laser as a Deposition technique (RPLD), 1.064μm, 7 nsec Q-switch Nd-YAG laser with 400 mJ/cm2 laser energy’s has been used to ablated high purity cupper target and deposited on the porous silicon substrates recorded and study the effect of rapid thermal annealing on the structural characteristics, morphological, electrical characteristics and properties of the solar cell. Results of AFM likelihood of improved absorption, thereby reducing the reflection compared with crystalline silicon surface. The results showed the characteristics of the solar cell and a clear improvement in the efficiency of the solar cell in the
... Show More