Preferred Language
Articles
/
joe-1733
A Modified Vigenère Cipher based on Time and Biometrics features
...Show More Authors

Biometrics is widely used with security systems nowadays; each biometric modality can be useful and has distinctive properties that provide uniqueness and ambiguity for security systems especially in communication and network technologies. This paper is about using biometric features of fingerprint, which is called (minutiae) to cipher a text message and ensure safe arrival of data at receiver end. The classical cryptosystems (Caesar, Vigenère, etc.) became obsolete methods for encryption because of the high-performance machines which focusing on repetition of the key in their attacks to break the cipher. Several Researchers of cryptography give efforts to modify and develop Vigenère cipher by enhancing its weaknesses. The proposed method uses local feature of fingerprint represented by minutiae positions to overcome the problem of repeated key to perform encryption and decryption of a text message, where, the message will be ciphered by a modified Vigenère method. Unlike the old usual method, the key constructed from fingerprint minutiae depend on instantaneous date and time of ciphertext generation. The Vigenère table consist of 95 elements: case sensitive letters, numbers, symbols and punctuation.  The simulation results (with MATLAB 2021b) show that the original message cannot be reconstructed without the presence of the key which is a function of the date and time of generation. Where 720 different keys can be generated per day which mean 1440 distinct ciphertexts can be obtained for the same message daily.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
A Mathematical Model of a Thermally Activated Roof (TAR) Cooling System Using a Simplified RC-Thermal Model with Time Dependent Supply Water Temperature
...Show More Authors

This paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
A Control Program for Hydropower Operation Based on Minimizing the Principal Stress Values on the Dam Body: Mosul Dam Case Study
...Show More Authors

This study examines the vibrations produced by hydropower operations to improve embankment dam safety. This study consists of two parts: In the first part, ANSYS-CFX was used to generate a three-dimensional (3-D) finite volume (FV) model to simulate a vertical Francis turbine unit in the Mosul hydropower plant. The pressure pattern result of the turbine model was transformed into the dam body to show how the turbine unit's operation affects the dam's stability. The upstream reservoir conditions, various flow rates, and fully open inlet gates were considered. In the second part of this study, a 3-D FE Mosul dam model was simulated using an ANSYS program. The operational turbine model's water pressure pattern is conveyed t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Socar Proceedings
Enhanced permeability estimation in non-cored wells using a modified flow zone index-permeability crossplot: a case study of carbonate reservoirs
...Show More Authors

The permeability estimates for the uncored wells and a porosity function adopting a modified flow zone index-permeability crossplot are given in this work. The issues with implementing that approach were mostly crossplots, due to the influence of geological heterogeneity, did not show a clear connection (scatter data). Carbonate reservoir flow units may now be identified and characterized using a new approach, which has been formally confirmed. Due to the comparable distribution and flow of clastic and carbonate rock fluids, this zoning method is most effective for reservoirs with significant primary and secondary porosity. The equations and correlations here are more generalizable since they connect these variables by combining cor

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Thu Mar 09 2017
Journal Name
University Of Baghdad
Synthesis of modified Graphene Oxide and its application as Electrochemical Sensor
...Show More Authors

This study involved preparation of Graphene oxide (GO) and reduced graphene oxide (RGO) using Hummer method and chemical method respectively. These carbon nanomaterials were used as starting material to make novel functionalize with thiocarbohydrazide (TCH) which was prepared by reacting CS2 with hydrazine to form GO or RGO- 4-amino,5-substituted 1H,1,2,4 Triazole 5(4H) thion (ASTT) ,(GOT) and( RGOT) respectively via cyclocondensation reaction. Also MnO2 nanorod was prepared to form hybridized with GOT and RGOT. A commercial multiwall carbon nanotube (MWCNT) and functionalization with carboxylic groups' (f-MWCNT) and its nanocomposite with GOT were also prepared. All carbon nanomaterials were characterized with different techniques such as

... Show More
Preview PDF
Publication Date
Thu Dec 03 2015
Journal Name
Iraqi Journal Of Science
New multispectral images classification method based on MSR and Skewness implementing on various sensor scenes
...Show More Authors

Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Southwest Jiaotong University
Multi -Focus Image Fusion Based on Stationary Wavelet Transform and PCA on YCBCR Color Space
...Show More Authors

The multi-focus image fusion method can fuse more than one focused image to generate a single image with more accurate description. The purpose of image fusion is to generate one image by combining information from many source images of the same scene. In this paper, a multi-focus image fusion method is proposed with a hybrid pixel level obtained in the spatial and transform domains. The proposed method is implemented on multi-focus source images in YCbCr color space. As the first step two-level stationary wavelet transform was applied on the Y channel of two source images. The fused Y channel is implemented by using many fusion rule techniques. The Cb and Cr channels of the source images are fused using principal component analysis (PCA).

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (3)
Scopus Crossref
Publication Date
Wed Aug 28 2019
Journal Name
Journal Of Engineering
     Influent Flow Rate Effect On Sewage Pump Station Performance Based On Organic And Sediment Loading
...Show More Authors

The performance of sewage pumps stations affected by many factors through its work time which produce undesired transportation efficiency. This paper is focus on the use of artificial neural network and multiple linear regression (MLR) models for prediction the major sewage pump station in Baghdad city. The data used in this work were obtained from Al-Habibia sewage pump station during specified records- three years in Al-Karkh district, Baghdad. Pumping capability of the stations was recognized by considering the influent input importance of discharge, total suspended solids (TSS) and biological oxygen demand (BOD).  In addition, the chemical oxygen demands (COD), pH and chloride (Cl). The proposed model performanc

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Tue May 23 2023
Journal Name
Journal Of Sensors
On-Board Digital Twin Based on Impedance and Model Predictive Control for Aerial Robot Grasping
...Show More Authors

Aerial manipulation of objects has a number of advantages as it is not limited by the morphology of the terrain. One of the main problems of the aerial payload process is the lack of real-time prediction of the interaction between the gripper of the aerial robot and the payload. This paper introduces a digital twin (DT) approach based on impedance control of the aerial payload transmission process. The impedance control technique is implemented to develop the target impedance based on emerging the mass of the payload and the model of the gripper fingers. Tracking the position of the interactional point between the fingers of gripper and payload, inside the impedance control, is achieved using model predictive control (MPD) approach.

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jul 02 2017
Journal Name
Journal Of Educational And Psychological Researches
The Effect of Lead Time Strategy on the First Intermediate Class Pupils' Achievement in Geography
...Show More Authors

The study aims at finding out the effect of the lead time strategy on the first intermediate class pupils' achievement in geography The partial experimental design of two groups, experimental and control, with pre-post tests is used. The sample is represented in (73) female pupils. The sample is divided into two groups (37) experimental group and (36) control one. The sam ple is selected from first intermediate class pupils ( Al Batol intermediate school for girls) Baghdad Al-karkh-3, for academic year 2015-2016 The researcher has equalized the two groups in several variables: the previous achievement tests, intelligence, age in months, the scores of geography test of first course

View Publication Preview PDF
Publication Date
Sat Aug 24 2024
Journal Name
Mathematics
Identification of Time-Wise Thermal Diffusivity, Advection Velocity on the Free-Boundary Inverse Coefficient Problem
...Show More Authors

This paper is concerned with finding solutions to free-boundary inverse coefficient problems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial and boundary conditions as well as non-localized integral observations of zeroth and first-order heat momentum. The direct problem is solved for the temperature distribution and the non-localized integral measurements using the Crank–Nicolson finite difference method. The inverse problem is solved by simultaneously finding the temperature distribution, the time-dependent free-boundary function indicating the location of the moving interface, and the time-wise thermal diffusivity or advection velocities. We reformulate the inverse problem as a non-

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref