Preferred Language
Articles
/
joe-1717
Flexural Behavior of Reinforced Rubberized Reactive Powder Concrete Beams under Repeated Loads

Non-biodegradability of rubber tires contributes to pollution and fire hazards in the natural environment. In this study, the flexural behavior of the Rubberized Reactive Powder Concrete (RRPC) beams that contained various proportions and sizes of scrap tire rubber was investigated and compared to the flexural behavior of the regular RPC. Fresh properties, hardened properties, load-deflection relation, first crack load, ultimate load, and crack width are studied and analyzed. Mixes were made using micro steel fiber of the straight type, and they had an aspect ratio of 65. Thirteen beams were tested under two loading points (Repeated loading) with small-scale beams (1100 mm, 150 mm, 100 mm) size.

The fine aggregate is replaced by 5, 10, and 15%, respectively, with crumb rubber. While replacement of silica fume was 10, 20, 30, and 50%, respectively, with very fine rubber. Also, chip rubber was added to the mixture as coarse aggregate with 5, 10, and 15%. Five tested beams were chosen as case studies to analyze and compare the results of the ABAQUS software with the experimental results. The results showed that the flexural behavior of RRPC beams that contains rubber was acceptable when compared with the flexural behavior of the RPC beam (depending on load-carrying capacity). The crack width was decreased by including waste rubber and steel fibers. There is a satisfactory agreement between the results of the numerical analysis and the results of the experimental testing. Slight ultimate load differences are targeted between the effects of the monotonic loading and the repeated loading.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Materials Today: Proceedings
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Mar 31 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Behavior of Plain Concrete Beam Analyzed Using Extended Finite Element Method

In this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggr

... Show More
Crossref
Publication Date
Fri Nov 01 2019
Journal Name
International Journal Of Engineering
Scopus Clarivate Crossref
Publication Date
Fri Jun 01 2018
Journal Name
Journal Of Engineering Science And Technology
Scopus
Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Ssrn Electronic Journal
Design of Earthquake-Resistant Buildings by Using Reinforced Concrete or Steel Flexible Corner Joints

This study focuses on studying the effect of reinforced steel in detail, and steel reinforcement (tensile ratio, compression ratio, size, and joint angle shape) on the strength of reinforced concrete (compressive strength) Fc' and searching for the most accurate details of concrete divisions, their behavior, and corner resistance of reinforced concrete joint. The comparison of this paper with previous studies, especially in the studied properties. The conclusions of the chapter are summarized that these effects had a clear effect and a specific effect on the behavior and resistance of the reinforced concrete corner joints under the negative moments and under their influence and the resulting stress conditions. The types of defects that can

... Show More
Crossref (1)
Crossref
View Publication
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Prediction of Compressive Strength of Reinforced Concrete Structural Elements by Using Combined Non-Destructive Tests

This research is devoted to investigate relationship between both Ultrasonic Pulse Velocity and Rebound Number (Hammer Test) with cube compressive strength and also to study the effect of steel reinforcement on these relationships.
A study was carried out on 32 scale model reinforced concrete elements. Non destructive testing campaign (mainly ultrasonic and rebound hammer tests) made on the same elements. About 72 concrete cubes (15 X 15 X15) were taken from the concrete mixes to check the compressive strength.. Data analyzed.Include the possible correlations between non destructive testing (NDT) and compressive strength (DT) Statistical approach is used for this purpose. A new relationships obtained from correlations results is give

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Wed Jan 20 2021
Journal Name
Earth And Environmental Science
Time Dependent Behavior of Engineered Cementitious Composite Concrete Produced from Portland Limestone Cement

Conventional concretes are nearly unbendable, and just 0.1 percent of strain potential makes them incredibly brittle and stiff. This absence of bendability is a significant cause of strain failure and has been a guiding force in the production of an elegant substance, bendable concrete, also known as engineered cement composites, abbreviated as ECC. This type of concrete is capable of displaying dramatically increased flexibility. ECC is reinforced with micromechanical polymer fibers. ECC usually uses a 2 percent volume of small, disconnected fibers. Thus, bendable concrete deforms but without breaking any further than conventional concrete. This research aims to involve this type of concrete, bendable concrete, that will give solut

... Show More
Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Evaluation of the Stability and Flow of Asphalt Concrete Produced with Waste Brick Tile Powder as a Filler

The utilization of recycled brick tile powder as a replacement for conventional filler in the asphalt concrete mix has been studied in this research. This research evaluates the effectiveness of recycled brick tile powder and determines its optimum replacement level. Using recycled brick tile powder is significant from an environmental standpoint as it is a waste product from construction activities. Sixteen asphalt concrete samples were produced, and eight were soaked for a day. Samples contained 5% Bitumen, 2% to 5% brick tile powder, and conventional stone dust filler. The properties of samples were evaluated using the Marshall test. It was observed that the resistance to stiffness and deformation of asphalt concrete

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Jan 01 2008
Journal Name
Tikrit Journal Of Engineering Sciences
Publication Date
Wed Feb 01 2023
Journal Name
Measurement: Sensors
Dynamic monitoring of saturated stiff clay soil foundation structure by falling weight deflectometer system under impact loads sensors effect

Experiments research is done to determine how saturated stiff clayey soil responds to a single impulsive load. Models made of saturated, stiff clay were investigated. To supply the single pulse energy, various falling weights from various heights were tested using the falling weight deflectometer (FWD). Dynamic effects can range from the major failure of a sensitive sensor or system to the apparent destruction of structures. This study examines the response of saturated stiff clay soil to a single impulsive load (vertical displacement at the soil surface below and beside the bearing plates). Such reactions consist of displacements, velocities, and accelerations caused by the impact occurring at the surface depth induced by the impact loads

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref