Preferred Language
Articles
/
joe-1717
Flexural Behavior of Reinforced Rubberized Reactive Powder Concrete Beams under Repeated Loads

Non-biodegradability of rubber tires contributes to pollution and fire hazards in the natural environment. In this study, the flexural behavior of the Rubberized Reactive Powder Concrete (RRPC) beams that contained various proportions and sizes of scrap tire rubber was investigated and compared to the flexural behavior of the regular RPC. Fresh properties, hardened properties, load-deflection relation, first crack load, ultimate load, and crack width are studied and analyzed. Mixes were made using micro steel fiber of the straight type, and they had an aspect ratio of 65. Thirteen beams were tested under two loading points (Repeated loading) with small-scale beams (1100 mm, 150 mm, 100 mm) size.

The fine aggregate is replaced by 5, 10, and 15%, respectively, with crumb rubber. While replacement of silica fume was 10, 20, 30, and 50%, respectively, with very fine rubber. Also, chip rubber was added to the mixture as coarse aggregate with 5, 10, and 15%. Five tested beams were chosen as case studies to analyze and compare the results of the ABAQUS software with the experimental results. The results showed that the flexural behavior of RRPC beams that contains rubber was acceptable when compared with the flexural behavior of the RPC beam (depending on load-carrying capacity). The crack width was decreased by including waste rubber and steel fibers. There is a satisfactory agreement between the results of the numerical analysis and the results of the experimental testing. Slight ultimate load differences are targeted between the effects of the monotonic loading and the repeated loading.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Nov 01 2013
Journal Name
Journal Of Engineering
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Crossref
View Publication
Publication Date
Tue Aug 03 2021
Journal Name
Key Engineering Materials
Comparative Study of Structural Behavior for Asymmetrical Castellated (Concavely - Curved Soffit) Steel Beams with Different Strengthening Techniques

The Asymmetrical Castellated concavely – curved soffit Steel Beams with RPC and Lacing Reinforcement improves compactness and local buckling (web and flange local buckling), vertical shear strength at gross section (web crippling and web yielding at the fillet), and net section ( net vertical shear strength proportioned between the top and bottom tees relative to their areas (Yielding)), horizontal shear strength in web post (Yielding), web post-buckling strength, overall beam flexure strength, tee Vierendeel bending moment and lateral-torsional buckling, as a result of steel section encasement. This study presents two concentrated loads test results for seven specimens Asymmetrical Castellated concavely – curved soffit Steel Be

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Crossref
View Publication
Publication Date
Fri May 21 2021
Journal Name
Transportation Infrastructure Geotechnology
Scopus (10)
Crossref (10)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Aug 27 2018
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study on Doweled Expansion Joints on Behavior for Plain Concrete Pavement System

This paper deals with load-deflection behavior the jointed plain concrete pavement system using steel dowel bars as a mechanism to transmit load across the expansion joints. Experimentally, four models of the jointed plain concrete pavement system were made, each model consists of two slabs of plain concrete that connected together across expansion by two dowel bars and the concrete slab were supported by the subgrade soil. Two variables were dealt with, the first is diameter of dowel bar (12, 16 and 20 mm) and the second is type of the subgrade soil, two types of soil were used which classified according to the (AASHTO): Type I (A-6) and type II (A-7-6). Experimental results showed that increasing dowel bar diameter from 12 mm to 20 mm

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Scopus (3)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Tue Sep 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Time Prediction of Dynamic Behavior of Glass Fiber Reinforced Polyester Composites Subjected to Fluctuating Varied Temperatures

The reduction of vibration properties for composite material (woven roving E-glass fiber plies in thermosetting polyester matrix) is investigated at the prediction time under varied combined temperatures (60  to -15) using three types of boundary conditions like (CFCF, CCCF, and CFCC). The vibration properties are the amplitude, natural frequency, dynamic elastic moduli (young modulus in x, y directions and shear modulus in 1, 2 plane) and damping factor. The natural frequency of a system is a function of its elastic properties, dimensions, and mass. The woven roving glass fiber has been especially engineered for polymer reinforcement; but the unsaturated thermosetting polyester is widely used, offering a good balance of vibration p

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 31 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Behavior of Clay Masonry Prism under Vertical Load Using Detailed Micro Modeling Approach

The aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m

... Show More
Crossref (1)
Crossref
Publication Date
Mon Oct 17 2022
Journal Name
Sustainability
Analysis and Residual Behavior of Encased Pultruded GFRP I-Beam under Fire Loading

In this paper, fire resistance and residual capacity tests were carried out on encased pultruded glass fiber-reinforced polymer (GFRP) I-beams with high-strength concrete beams. The specimens were loaded concurrently under 25% of the ultimate load and fire exposure (an increase in temperature of 700 °C) for 70 min. Subsequently, the fire-damaged specimens were allowed to cool and then were loaded statically until failure to explore the residual behaviors. The effects of using shear connectors and web stiffeners on the residual behavior were investigated. Finite Element (FE) analysis was developed to simulate the encased pultruded GFRP I-beams under the effect of fire loading. The thermal analyses were performed using the general-pu

... Show More
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref