The using of recycled aggregates from construction and demolition waste (CDW) can preserve natural aggregate resources, reduce the demand for landfill, and contribute to a sustainable built environment. Concrete demolition waste has been proven to be an excellent source of aggregates for new concrete production. At a technical, economic, and environmental level, roller compacted concrete (RCC) applications benefit various civil construction projects. Roller Compacted Concrete (RCC) is a homogenous mixture that is best described as a zero-slump concrete placed with compacting equipment, uses in storage areas, dams, and most often as a basis for rigid pavements. The mix must be sufficiently dry to support the weight of vibratory machinery while still being sufficiently moist to enough paste binder dispersion throughout the mass for efficient compaction. Limited studies into the use of RCC with fine recycled aggregate not from pavements are figured. This study aims to see how well-recycled concrete aggregates (RCA) perform in RCC mixtures. Also how well waste concrete could be used as a fine and coarse aggregate substitute in roller-compacted concrete pavement mixes, to create a good concrete mix in both wet and firm phases. The test results of mechanical properties showed 10% RCA is similar to those in the reference mix in the compressive strength, a 100% RCA ratio reduces compressive strength by almost 30%. Comparing Reference mix and Recycled concrete by 30% replacement, the compressive strength drops by just 6% when the RCA ratio is 30%.
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Increasing the power conversion efficiency (PCE) of silicon solar cells by improving their junction properties or minimizing light reflection losses remains a major challenge. Extensive studies were carried out in order to develop an effective antireflection coating for monocrystalline solar cells. Here we report on the preparation of a nanostructured cerium oxide thin film by pulsed laser deposition (PLD) as an antireflection coating for silicon solar cell. The structural, optical, and electrical properties of a cerium oxide nanostructure film are investigated as a function of the number of laser pulses. The X-ray diffraction results reveal that the deposited cerium oxide films are crystalline in nature and have a cubic fluorite. The field
... Show MoreBackground. “Polyetheretherketone (PEEK)” is a biocompatible, high-strength polymer that is well-suited for use in dental applications due to its unique properties. However, achieving good adhesion between PEEK and hydrophilic materials such as dental adhesives or cement can be challenging. Also, this hydrophobicity may affect the use of PEEK as an implant material. Surface treatment or conditioning is often necessary to improve surface properties. The piranha solution is the treatment of choice to be explored for this purpose. Methods. PEEK disks of 10 mm diameter and 2 mm thickness were used in this study. Those samples were divided into five groups (each group has five samples). The first is the control group, in which no
... Show MoreThe flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce cha
... Show MoreThis paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreAmplitude variation with offset (AVO) analysis is an 1 efficient tool for hydrocarbon detection and identification of elastic rock properties and fluid types. It has been applied in the present study using reprocessed pre-stack 2D seismic data (1992, Caulerpa) from north-west of the Bonaparte Basin, Australia. The AVO response along the 2D pre-stack seismic data in the Laminaria High NW shelf of Australia was also investigated. Three hypotheses were suggested to investigate the AVO behaviour of the amplitude anomalies in which three different factors; fluid substitution, porosity and thickness (Wedge model) were tested. The AVO models with the synthetic gathers were analysed using log information to find which of these is the
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreThe research aimed: 1. Definition of family climate for the university students. 2. Definition of statistical significance of differences in family climate variable depending on the sex (males - females) and specialization (Scientific - humanity). 3. Definition of academic adjustment for university students. 4. Definition of correlation between climate and academic adjustment. The research sample formed of (300) male and female students by (150) male of scientific and humanitarian specialization and (150) female of scientific and humanitarian specialization randomly selected from the research community. To achieve the objectives of the research the researcher prepared a tool to measure family climate. And adopted the measure (Azzam 2010)
... Show More