Predicting vertical stress was indeed useful for controlling geomechanical issues since it allowed for the computation of pore pressure for the formation and the classification of fault regimes. This study provides an in-depth observation of vertical stress prediction utilizing numerous approaches using the Techlog 2015 software. Gardner's method results in incorrect vertical stress values with a problem that this method doesn't start from the surface and instead relies only on sound log data. Whereas the Amoco, Wendt non-acoustic, Traugott, average technique simply needed density log as input and used a straight line as the observed density, this was incorrect for vertical computing stress. The results of these methods show that extrapolated density measurement used an average for the real density. The gradient of an extrapolated method is much better in shallow depth into the vertical stress calculations. The Miller density method had an excellent fit with the real density in deep depth. It has been crucial to calculate vertical stress for the past 40 years because calculating pore pressure and geomechanical building models have employed vertical stress as input. The strongest predictor of vertical stress may have been bulk density. According to these results, the miller and extrapolated techniques may be the best two methods for determining vertical stress. Still, the gradient of an extrapolated method is much more excellent in shallow depth than the miller method. Extrapolated density approach may produce satisfactory results for vertical stress, while miller values are lower than those obtained by extrapolating. This may be due to the poor gradient of this method at shallow depths. Gardner's approach incorrectly displays minimum values of about 4000 psi at great depths. While other methods provide numbers that are similar because these methods use constant bulk density values that start at the surface and continue to the desired depth, this is incorrect.
This paper deals with prediction the effect of soil re-moulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil re-moulding due to actual pile driving. The re
... Show MoreThe most common cause of upper respiratory tract infection is coronavirus, which has a crown appearance due to the existence of spikes on its envelope. D-dimer levels in the plasma have been considered a prognostic factor for COVID-19 patients.
The aim of the study is to demonstrate the role of COVID-19 on coagulation parameters D-dimer and ferritin with their association with COVID-19 severity and disease progression in a single-center study.
This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show MoreAbstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization
... Show MoreUrban land uses are in a dynamic state that varies over time, the city of Karbala in Iraq has experienced functional changes over the past 100 years, as the city is characterized by the presence of significant tourist and socio-economic activity represented by religious tourism, and it occur due to various reasons such as urbanization. The purpose of this study is to apply a Markov model to analyze and predict the behavior of transforming the use of land in Karbala city over time. This can include the conversion of agricultural land, or other areas into residential, commercial, industrial land uses. The process of urbanization is typically driven by population growth, economic development, based on a set of probabilities and transitions bet
... Show MoreFeed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m
... Show MoreOne of the most severe problems with flexible asphalt pavements is permanent deformation in the form of rutting. Accordingly, the practice of adding fiber elements to asphalt mix to improve performance under dynamic loading has grown significantly in order to prevent rutting distress and ensure a safe and long-lasting road surface. This paper explores the effects of a combination of ceramic fiber (CF), a low-cost, easily available mineral fiber, and thermal insulator fiber reinforced to enhance the Marshall properties and increase the rutting resistance of asphalt mixes at high temperatures. Asphalt mixtures with 0%, 0.75%, 1.5%, and 2.25% CF content were prepared, and Marshall stability and wheel tracking tests were employed to stu
... Show MoreIn this work , an effective procedure of Box-Behnken based-ANN (Artificial Neural Network) and GA (Genetic Algorithm) has been utilized for finding the optimum conditions of wt.% of doping elements (Ce,Y, and Ge) doped-aluminizing-chromizing of Incoloy 800H . ANN and Box-Behnken design method have been implanted for minimizing hot corrosion rate kp (10-12g2.cm-4.s-1) in Incoloy 800H at 900oC . ANN was used for estimating the predicted values of hot corrosion rate kp (10-12g2.cm-4.s-1) . The optimal wt.% of doping elements combination to obtain minimum hot corrosion rate was calculated using genetic alg
... Show MoreBackground: Rehabilitation of the carious tooth to establish tooth structure integrity required cavity design that show a benign stress distribution. The aim of this study was to investigate the influence of the cavity position on the stress values in the reamining tooth structure restored with amalgam or resin composite. Materials and methods: Seven 2-D models of maxillary first premolar include class I cavity design was prepared, one sound tooth (A) 3 composite (B1, B2, and B3) and 3 amalgam (C1, C2, and C3). In design (BI and C1) the cavity position is in the mid distance between bacc-lingual cusp tip, design (B2 and C2) and (B3 and C3) shifted toward the buccal cusp and the lingual cusp for 0.5 mm respectively. One hundred N vertical
... Show MoreThe IGRF model is the empirical representation of the Earth magnetic field recommended for scientific use by the International Association of Geomagnetism and Aeronomy(IAGA).
Since the Geomagnetic field has the abi lity to change the orientation of satellite, the strength of Geomagnetic field and its horizontal component have been studied.
This paper discusses the phenomenon of the Geomagnetic field intensity and its horizontal component at diferent altitudes and at certain latitudes, the geomagnetic field data is obtained by using IGRF2000 model at Baghdad (44.7 degree East longitude) .