Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze medical images with favorable results. It can help save lives faster and rectify some medical errors. In this study, we look at the most up-to-date methodologies for medical image analytics that use convolutional neural networks on MRI images. There are several approaches to diagnosing and classifying brain cancers. Inside the brain, irregular cells grow so that a brain tumor appears. The size of the tumor and the part of the brain affected impact the symptoms.
Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show MoreEstimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreOne of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first
... Show MoreThe aim of the current research is to reveal the effect of using brain-based learning theory strategies on the achievement of Art Education students in the subject of Teaching Methods. The experimental design with two equal experimental and control groups was used. The experimental design with two independent and equal groups was used, and the total of the research sample was (60) male and female students, (30) male and female students represented the experimental group, and (30) male and female students represented the control group. The researcher prepared the research tool represented by the cognitive achievement test consisting of (20) questions, and it was characterized by honesty and reliability, and the experiment lasted (6) weeks
... Show MoreMetasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreIn this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show MoreDigital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft
... Show MoreBackground: Skull secondary tumors are malignant bone tumors which are increasing in incidence.Objective: The objectives of this study were to present clinical features , asses the outcome of patients with secondary skull tumors ,characterize the MRI features, locations, and extent of secondary skull tumors to determine the frequency of the symptomatic disease.Type of the study: This is a prospective study.Methods: This is a prospective study from February 2000 to February 2008. The patients were selected from five neurosurgical centers and one oncology hospital in Baghdad/Iraq. The inclusion criteria were MRI study of the head(either as an initial radiological study or following head CT scan when secondary brain tumor is suspected , vis
... Show More