This work deals with the effect of adding aluminum nanoparticles on the mechanical properties, micro-hardness and porosity of memory-shape alloys (Cu-Al-Ni). These alloys have wide applications in various industrial fields such as (high damping compounds and self-lubricating applications). The samples are manufactured using the powder metallurgy method, which involved pressing in only one direction and sintered in a furnace surrounded by an inert gas. Four percentages (0%, 5%, 10%, and 15%) of aluminum nanoparticles were fabricated, which depended on the weight of aluminum powder (13%) in the sample under study. To find out which phase is responsible for the reliability of the formation of this type of alloy and its porosity, X-ray diffraction (XRD) and scanning electron microscopy (SEM) tests are used. The Vickers micro-hardness and porosity properties of these alloys were studied using a Vickers micro-hardness and porosity tester according to ASTM b328-1996. The results showed that increasing the concentration of aluminum nanoparticles in the alloy led to an increase in hardness with a decrease in the porosity, and the sample (15%) gave the best hardness (190.8 HV). The sample (0%) gave the highest porosity (19.573) %.
Vapor-liquid equilibrium data are presented for the binary systems n-hexane - 1-propanol, benzene - 1-propanol and n-hexane – benzene at 760 mm of mercury pressure. In addition ternary data are presented at selected compositions with respect to the 1-propanol in the 1-propanol, benzene, n-hexane system at 760 mmHg. The results indicate the relative volatility of n-hexane relative to benzene increases appreciably with addition of 1-propanol.
Abstract: Aluminum alloys grade 6061-T6 are characterized by their excellent properties and processing characteristics which make them ideal for varieties of industrial applications under cyclic loading, aluminum alloys show less fatigue life than steel alloys of similar strength. In the current study, a nanosecond fiber laser of maximum pulse energy up to 9.9 mJ was used to apply laser shock peening process (LSP) on aluminum thin sheets to introduce residual stresses in order to enhance fatigue life under cyclic loading Box-Behnken design (BBD) based on the design of experiments (DOE) was employed in this study for experimental design data analysis, model building and optimization The effect of working parameters spot size (ω), scannin
... Show MoreThe performance of sewage pumps stations affected by many factors through its work time which produce undesired transportation efficiency. This paper is focus on the use of artificial neural network and multiple linear regression (MLR) models for prediction the major sewage pump station in Baghdad city. The data used in this work were obtained from Al-Habibia sewage pump station during specified records- three years in Al-Karkh district, Baghdad. Pumping capability of the stations was recognized by considering the influent input importance of discharge, total suspended solids (TSS) and biological oxygen demand (BOD). In addition, the chemical oxygen demands (COD), pH and chloride (Cl). The proposed model performanc
... Show MoreThe researchers believe the problem of searching the scarcity or limited tests of time kinetic response led to scarcity or limited availability of experimental research in exercises codified within the training curriculum for the junior class, and therefore has been weakening this physical variable as an important episode in the development of the players physical capacities as well as the lack of measure for this variable within the defensive skills in general and the skill of the player movement defender in particular, and it represents the goal of research in the treatment of the above through the construction and rationing test to measure the kinetic response to the movement of the player defender basketball junior time. Chosen as the r
... Show MoreAbstract Background: The lifestyle of an individual significantly influences health-promoting behaviors. The World Health Organization defines health promotion as a mechanism enabling people to increase control over and improve their health. This study aimed to evaluate the health promoting lifestyle profile of medical staff working in primary health care centers of Al-Rusafa, Baghdad.
The effect of short range correlations on the inelastic longitudinal Coulomb form
factors for the lowest four excited 2+ states in 18O is analyzed. This effect (which
depends on the correlation parameter β) is inserted into the ground state charge
density distribution through the Jastrow type correlation function. The single particle
harmonic oscillator wave function is used with an oscillator size parameter b. The
parameters β and b are, considered as free parameters, adjusted for each excited state
separately so as to reproduce the experimental root mean square charge radius of
18O. The model space of 18O does not contribute to the transition charge density. As
a result, the inelastic Coulomb form factor of 18