This research investigates manganese (Mn) extraction from Electric Arc Furnace Steel Slag (EAFS) by using the Liquid-liquid extraction (LLE) method. The chemical analysis was done on the slag using X-ray fluorescence, X-ray diffraction, and atomic absorption spectroscopy. This work consisted of two parts: the first was an extensive study of the effect of variables that can affect the leaching process rate for Mn element from slag (reaction time, nitric acid concentration, solid to liquid ratio, and stirring speed), and the second part evaluates the extraction of Mn element from leached solution. The results showed the possibility of leaching 83.5 % of Mn element from the slag at a temperature of 25°C, nitric acid concentration 2 M, time 90 min, S / L ratio 1/100, and stirring speed 700 rpm. 94.7% extraction of Mn was accomplished from nitric acid solutions by using Octyl Pyro Phosphoric Acid (OPPA) in kerosene at contact time for 12 min, 50%OPPA -kerosene, stirring speed 900 rpm, and organic to the aqueous phase (O/A) of 4/1. Kerosene was the most important diluting agent in extracting Mn, compared to benzene and toluene.
This paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreWeb testing is very important method for users and developers because it gives the ability to detect errors in applications and check their quality to perform services to users performance abilities, user interface, security and other different types of web testing that may occur in web application. This paper focuses on a major branch of the performance testing, which is called the load testing. Load testing depends on an important elements called request time and response time. From these elements, it can be decided if the performance time of a web application is good or not. In the experimental results, the load testing applied on the website (http://ihcoedu.uobaghdad.edu.iq) the main home page and all the science departments pages. In t
... Show More|
Ground Penetrating Radar (GPR) is a nondestructive geophysical technique that uses electromagnetic waves to evaluate subsurface information. A GPR unit emits a short pulse of electromagnetic energy and is able to determine the presence or absence of a target by examining the reflected energy from that pulse. GPR is geophysical approach that use band of the radio spectrum. In this research the function of GPR has been summarized as survey different buried objects such as (Iron, Plastic(PVC), Aluminum) in specified depth about (0.5m) using antenna of 250 MHZ, the response of the each object can be recognized as its shapes, this recognition have been performed using image processi |
In this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreQuantum dots (QDs) can be defined as nanoparticles (NPs) in which the movement of charge carriers is restricted in all directions. CdTe QDs are one of the most important semiconducting crystals among other various types where it has a direct energy gap of about 1.53 eV. The aim of this study is to exaine the optical and structural properties of the 3MPA capped CdTe QDs. The preparation method was based on the work of Ncapayi et al. for preparing 3MPA CdTe QDs, and hen, the same way was treated as by Ahmed et al. via hydrothermal method by using an autoclave at the same temperature but at a different reaction time. The direct optical energy gap of CdTe QDs is between 2.29 eV and 2.50 eV. The FTIR results confirmed the covalent bonding betwee
... Show More