This paper focused on the stone matrix asphalt (SMA) technology that was developed essentially to guard against rutting distress. For this procedure, fibers play a racy role in stabilizing and preventing the drain down problem caused by the necessity of high binder content coupled with their strengthening effect. A set of specimens with cylindrical and slab shapes were fabricated by inclusions jute, polyester, and carbon fibers. For each type, three contents of 0.25%, 0.5%, and 0.75% by weight of mixture were added by lengths of 5, 7.5, and 10 mm. The prepared mixtures were tested to gain the essential pertained parameters discriminated by the values of drain down, Marshall quotient, rut depth, and dynamic stability. It has appeared that the fibers rate of 0.5% and 7.5 mm length is much appropriate to yield the best performance of modified mixtures. At these values, carbon fibers recorded the highest increase level of rutting resistance and dynamic stability by 53% and 100%, respectively while, jute fibers exhibited the lowest improvement by only 34% and 63%, respectively; nevertheless, they produced mixtures having the lowest drain down value. Regarding the index of plastic stiffness, polyester fibers embedded mixtures occupied the first rank of increasing by 38%.
Asphalt binder is a thermoplastic material that conducts as an elastic solid at lower service temperatures or throughout fast loading rate. At a high temperature or slow rate of loading, asphalt binder conducts as a different liquid. The classical duplication generates a required to assess the mechanical properties of asphalt concrete at the anticipated service temperature to reduce the stress cracking, which happens at lower temperatures, fatigue, and the plastic deformation at higher temperatures (rutting). In this study, an achievement was made to assess the effect of temperature on the mechanical characteristics of asphalt concrete mixes. A total of 132 asphalt concrete samples were attended utilizing two asphalt cement grades (40-50) a
... Show MoreAsphalt pavement properties in Iraq are highly affected by elevated summer air temperatures. One of these properties is stiffness (resilient modulus). To explain the effect of air temperatures on stiffness of asphalt concrete, it is necessary to determine the distribution of temperatures through the pavement asphalt concrete layers. In this study, the distribution of pavement temperatures at three depths (2cm,7cm, 10cm) below the pavement surface is determined by using the temperature data logger instrument. A relationship for determining pavement temperature as related to depth and air temperature has been suggested. To achieve the objective of this thesis, the prepared specimens have been tested for indirect tension in accordance with
... Show MoreThe study was conducted to show the effect of using dried rumen powder as a source of animal protein in the diets of common carp (Cyprinus carpio L.) on its performance, in the fish laboratory/College of Agricultural Engineering Sciences/University of Baghdad/ for a period of 70 d, 70 fingerlings were used with an average starting weight of 30±3 g, with a live mass rate of 202±2 g, randomly distributed among five treatments, two replicates for each treatment and seven fish for each replicate. Five diets of almost identical protein content and different percentages of addition of dried rumen powder were added. 25% was added to treatment T2 and 50% to treatment T3 and 75% of the treatment T4 and 100% of the treatment T5
... Show MoreRecycling process presents a sustainable pavement by using the old materials that could be milled, mixed with virgin materials and recycling agents to produce recycled mixtures. The objective of this study is to evaluate the impact of water on recycled asphalt concrete mixtures, and the effect of the inclusion of old materials into recycled mixtures on the resistance of water damage. A total of 54 Marshall Specimens and 54 compressive strength specimens of (virgin, recycled, and aged asphalt concrete mixtures) had been prepared, and subjected to Tensile Strength Ratio test, and Index of Retained Strength test. Four types of recycling agents (used oil, oil + crumb rubber, soft grade asphalt cement, and asphalt cement + Su
... Show MoreRecycled asphalt concrete mixture are prepared, artificially aged and processed in the laboratory to maintain the homogeneity of recycled asphalt concrete mixture gradation, and bitumen content. The loose asphalt concrete mix was subjected to cycle of accelerated aging, (short –term aging) and the compacted mix was subjected to (long -term aging) as per Super-pave procedure. Twenty four Specimens were constructed at optimum asphalt content according to Marshall Method. Recycled mixture was prepared from aged asphalt concrete using recycling agent (soft asphalt cement blended with silica fumes) by (1.5%) weight of mixture as recycling agent content. The effect of recycling agent on aging after recycling process behavior
... Show MoreIn this paper, mesoscale modeling is performed to simulate and understand fracture behavior of two concrete composites: cement and asphalt concrete using disk-shaped compact tension (DCT) tests. Mesoscale models are used as alternative to macroscale models to obtain better realistic behavior of composite and heterogeneous materials such as cement and asphalt concrete. In mesoscale models, aggregate and matrix are represented as distinct materials and each material has its characteristic properties. Disk-shaped compact tension test is used to obtain tensile strength and fracture energy of materials. This test can be used as a better alternative to other tests such as three points bending tests because it is more convenient for both field and
... Show MoreThe High Modulus Asphalt Concrete Mixture (HMACM) or (EME) (Enrobes a Module Eleve) developed in France, since, 1980 by Laboratories Central des Ponts et Chaussees (LCPC). Due to the increasing in traffic intensity and axle loading this type of mixing were suitable for pavement subjected to heavy duty. Experiments showed that EME mixtures have an excellent moisture damage resistance permanent deformation, fatigue cracking and reducing costs of maintenance and a significant reduction in thickness of pavement. Because of the high stiffness of EME mixes, the stresses transformed to the bottom laid layer by repeated traffic wheel loads were reduced effectively. This study intend to focus the light into the possibility of producing asphalt mixtu
... Show MoreImproving the ability of asphalt pavement to survive the heavily repeated axle loads and weathering challenges in Iraq has been the subject of research for many years. The critical need for such data in the design and construction of more durable flexible pavement in bridge deck material is paramount. One of new possible steps is the epoxy asphalt concrete, which is classified as a superior asphalt concrete in roads and greatly imparts the level of design and construction. This paper describes a study on 40-50 penetration graded asphalt cement mixed with epoxy to produce asphalt concrete mixtures. The tests carried out are the Marshall properties, permanent deformation, flexural fatigue cracking and moisture damage. Epoxy asphalt mixes perf
... Show MoreIn the present research, the nuclear deformation of the Ne, Mg, Si, S, Ar, and Kr even–even isotopes has been investigated within the framework of Hartree–Fock–Bogoliubov method and SLy4 Skyrme parameterization. In particular, the deform shapes of the effect of nucleons collective motion by coupling between the single-particle motion and the potential surface have been studied. Furthermore, binding energy, the single-particle nuclear density distributions, the corresponding nuclear radii, and quadrupole deformation parameter have been also calculated and compared with the available experimental data. From the outcome of our investigation, it is possible to conclude that the deforming effects cannot be neglected in a characterization o
... Show More