Conjugate heat transfer has significant implications on heat transfer characteristics, particularly in thick wall applications and small diameter pipes. In this study, a three-dimensional numerical investigation was carried out using commercial CFD software “ANSYS FLUENT” to study the influence of conjugate heat transfer of laminar flow in mini channels at constant heat flux wall conditions. Two parameters were studied and analyzed: the wall thickness and thermal conductivity and their effect on heat transfer characteristics such as temperature profile and Nusselt number. Thermal conductivity of (0.25, 10, 202, and 387) W/m2C and wall thickness of (1, 5, and 50) mm were used for a channel of (1*2) mm cross-sectional dimensions. Taking the Reynolds number 800 for all cases. The results demonstrate that the conjugate conduction impact is observed at high conductivities and for large wall thicknesses in the studied materials. This impact flattened the wall temperature distribution along the channel wall instead of being an augmented linear profile. Also, it flattens the local Nusselt number due to the axial heat conduction along the walls. It reduces the effect of the entrance region of high Nusselt number while making the fluid temperature profile curved and redistributing the wall heat flux and accumulating it toward the leading edge. A decrease was observed in the average Nusselt number of 8% when increasing wall thickness from 1 mm to 50 mm for the same thermal conductivity of 10 W/m2C, while an increase in Nusselt number of 19% with thermal conductivity changes from 0.25 W/m2C to 10 W/m2C.
In this paper, the impact of magnetic force, rotation, and nonlinear heat radiation on the peristaltic flow of a hybrid bio -nanofluids through a symmetric channel are investigated. Under the assumption of a low Reynolds number and a long wavelength, the exact solution of the expression for stream function, velocity, heat transfer coefficient, induced magnetic field, magnetic force, and temperature are obtained by using the Adomian decomposition method. The findings show that the magnetic force contours improve when the magnitude of the Hartmann number M is high and decreases when rotation increases. Lastly, the effects of essential parameters that appear in the problem are analyzed through a graph. Plotting all figures is done using the
... Show Moreproduction of the spot in the news channels - a study of patterns of spot media used in the production of spring breaks Arab Al-Arabiya
The spacers news in Arabic, one of the messages that seek channel output are fit and policy on the one hand and meet the needs of viewers for information intensive and image influential to find out the latest developments on the Arab arena, especially the Syrian revolution on the other and thus The viewer for the type of coverage the stomach through a newsletter about the event on the one hand to keep following up on her and eager to watch the other hand
And sou
... Show MoreThe uniform flow distrbiution in the multi-outlets pipe highly depends on the several parameters act togather. Therefor, there is no general method to achieve this goal. The goal of this study is to investigate the proposed approach that can provide significant relief of the maldistribution. The method is based on re-circulating portion of flow from the end of the header to reduce pressure at this region . The physical model consists of main manifold with uniform longitudinal section having diameter of 152.4 mm (6 in), five laterals with diameter of 76.2 mm (3 in), and spacing of 300 mm. At first, The experiment is carried out with conventional manifold, which is a closed-end. Then, small amount of water is allowed
... Show MoreReservoir characterization plays a crucial role in comprehending the distribution of formation properties and fluids within heterogeneous reservoirs. This knowledge is instrumental in constructing an accurate three-dimensional model of the reservoir, facilitating predictions regarding porosity, permeability, and fluid flow distribution. Among the various methods employed for reservoir characterization, the hydraulic flow unit stands out as a widely adopted approach. By effectively subdividing the reservoir into distinct zones, each characterized by unique petrophysical and geological properties, hydraulic flow units enable comprehensive reservoir analysis. The concept of the flow unit is closely tied to the flow zone indicator, a cr
... Show MoreThis work presents the simulation of a Low density Parity Check (LDPC) coding scheme with
multiuserMulti-Carrier Code Division Multiple Access (MC-CDMA) system over Additive White
Gaussian Noise (AWGN) channel and multipath fading channels. The decoding technique used in
the simulation was iterative decoding since it gives maximum efficiency with ten iterations.
Modulation schemes that used are Phase Shift Keying (BPSK, QPSK and 16 PSK), along with the
Orthogonal Frequency Division Multiplexing (OFDM). A 12 pilot carrier were used in the estimator
to compensate channel effect. The channel model used is Long Term Evolution (LTE) channel with
Technical Specification TS 25.101v2.10 and 5 MHz bandwidth including the chan
An infant incubator in the neonatal intensive care unit (NICU) is a medical instrument of care that provides oxygen, warmth and moisture to a newborn baby. Due to environmental conditions affecting the infants foster babies may experience discomfort and pain at some point. Thus, this study aimed to assess ambient air quality in neonatal incubators to improve the environmental quality of neonatal intensive care units and safety. Air pollutants concentrations consisting of particulate matter (pm2.5, pm10), hydrocarbons (HOCH), volatile organic compounds (VOC), air quality index (AQI), humidity and temperature, were measured at four selected Baghdad hospitals (Al-Karkh and Rusafa) . The results showed that the increase in rela
... Show MoreA general velocity profile for a laminar flow over a flat plate with zero incidence is obtained by employing a new boundary condition to the other available boundary conditions. The general velocity profile is mathematically simple and nearest to the exact solution. Also other related values, boundary layer thickness, displacement thickness, momentum thickness and coefficient of friction are nearest to the exact solution compared with other corresponding values for other researchers.
This paper is concerned with the solution of the nanoscale structures consisting of the with an effective mass envelope function theory, the electronic states of the quantum ring are studied. In calculations, the effects due to the different effective masses of electrons in and out the rings are included. The energy levels of the electron are calculated in the different shapes of rings, i.e., that the inner radius of rings sensitively change the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. The structures of quantum rings are studied by the one electronic band Hamiltonian effective mass approximati
... Show More