Thrust blocks and restraint joints are the two most popular methods of counteracting the thrust force that generated at pipe fittings (bends, Tee, wye, reducers, dead ends, etc…). Both systems perform the same function, which is to prevent the joints from separating from the pipes. The aim of the study is to review previous studies and scientific theories related to the study and design of thrust blocks and restraint joints to study the behavior of both systems under thrust force and to study the factors and variables that affect the behavior of these systems. The behavior of both systems must be studied because they cannot be abandoned, as each system has conditions whose use is more feasible, scientific, and economical. The use of thrust blocks is usually more economical. Still, in many cases, its use is not appropriate, as it is required to wait for the result of the compressive strength test of the concrete. It is required to close the pipe trench as soon as possible; thus, this affects the safety of workers. Or there are future excavation works that may harm the stability of the block, and when the pipe diameter is large, we need a large amount of concrete which affects the economic aspect of the work. For this, the alternative system (restraint joint) must be studied. The main result of the research is that each system provides the opposite force against thrust force with a different mechanism from the other depending on the properties of the soil.
We manufactured the nanoparticles light emitting diode (NPs-LED) for organic and inorganic semiconductors to achieve electroluminescence (EL). The nanoparticles of Europium oxide(Eu2O3) were incorporated into the thin film layers of the organic compounds, poly(3,4,- ethylene dioxythiophene)/polystyrene sulfonic acid (PEDOT:PSS), N,N’–diphenyl-N,N’ –bis(3-methylphenyl)-1,1’-biphenyl 4,4’- diamine (poly TPD) and polymethyl methacrylate (PMMA), by the spin coating and with the help of the phase segregation method. The EL of NPs-LED, was study for the different bias voltages (20, 25, 30) V at the room temperature, from depending on the CIE 1931 color spaces and it was generated the white light at 20V, t
... Show MoreFive rice (Oryza sativa L.) cultivars (N22, Amber, Moroberekan, Kinandang Patong, and Azucena) underwent path coefficient analysis across three plant spacings (15 cm × 15 cm, 20 cm × 20 cm, and 25 cm× 25 cm) in the summer of 2017 at the College of Agricultural Engineering Sciences, University of Baghdad, Al-Jadriya, Iraq. The experiment proceeded in a randomized complete block design (RCBD) with a split-plot arrangement and three replications. The main plots included three planting distances, and the subplot comprised five varieties. The traits studied were plant height, flag leaf area, number of tillers, panicle number, length and branches, grains per panicle, 1000-grain weight, and the percentage of unfilled grains. The results
... Show MoreBackground: Surface treatment of machined dental zirconia for enhancement of the adhesion to resin cement, using Er,Cr:YSGG Laser. Materials and Methods: Total number of 42 zirconia disc specimens (9 mm diameter, and 2 mm height) was sintered according to the manufacturer instruction. They are divided into six groups, each group of seven samples. Laser groups (Experiment parameters) were depend on laser total irradiation time, pulse duration, and power. Group (A): 20 sec., 60 µs pulse duration. Group (B): 30 sec., 60 µs pulse duration. Group (C): 40 sec., 60 µs pulse duration. Group (D): 20 sec., 700 µs pulse duration. Group (E): 30 sec., 700 µs pulse duration, with different powers used (1, 1
... Show MoreThe study aims to evaluate the removal of sulfur content from Iraqi light naphtha produced in Al-Dora refinery by adsorption desulfurization DS technique using modified activated carbon MAC loaded with nickel Ni and copper Cu as single binary metals. The experiments were carried in a batch unit with various operating parameters; MAC dosage, agitation speed, and a contact time of 300 min at constant initial sulfur concentration 155 ppm and temperature. The results showed higher DS% by AC/Ni-Cu (66.45)% at 500 rpm and 1 g dosage than DS (29.03)% by activated carbon AC, increasing MAC dosage, agitation speed, and contact time led to increasing DS% values. The adsorption capacity of MAC results was recorded (16, 15, and 20) mg sulfu
... Show MoreSeveral azo dyes were synthesized through coupling reaetion of some substituted phenols and B.naphthol with diazonium salt of 2- amino-1,3-4- thiadiazol -5- thiol. All the synthesized compounds during this work were characterized using some speetral data (F.TIRand UV)andM.P . 2-[4 --Hydroxy napthyl-azo ] -1,3,4-Thiadiazol -5-Thiol • 2- [2-- hydroxy –4- NO2 – phenyl- azo]- 1,3,4 - Thiadiazol –5-Thiol. • 2- [3--Amino-4-Hydroxy phenyl –azo]-1,3,4 - Thiadiazol –5-Thiol. . • 2-[2--Amino-4-Hydroxy phenyl -azo]-1,3,4 - Thiadiazol –5-Thiol . • 2- [3--Amino-6- Hydroxy phenyl -azo]-1,3,4 - Thiadiazol –5-Thiol. • 2-[2-- Hydroxy- 5 – chloro – Pheny - azo]- 1,3,4 - Thiadiazol –5-Thiol . • 2- [4-- Hydroxy phenyl -azo] -1,
... Show MoreBackground: It may be an important prospective clinical use of manufacturing of porous implant for clinical situations, such as cases of limitation in bone height, low bone density .The small segment of porous implant an effective osseointegration allows increasing in contact area provided for small segmented porous provided by its surface configuration. This study was done to Fabricate porous titanium implants by powder technology, as well as the observation of removal torque values of porous titanium implants compared to smooth titanium implants. Materials and methods: Twenty porous titanium implants (3.2mm in diameter and 8mm in length) were manufactured by powder technology using commercially pure titanium powder of ≤75um part
... Show MoreThe removal of COD from wastewater generated by petroleum refinery has been investigated by adopting electrocoagulation (EC) combined with adsorption using activated carbon (AC) derived from avocado seeds. The process variables influencing COD removal were studied: current density (2–10 mA/cm2), pH (4–9), and AC dosage (0.2–1 g/L). Response surface methodology (RSM) based on Box–Behnken design (BBD) was used to construct a mathematical model of the EC/AC process. Results showed that current density has the major effect on the COD removal with a percent of contribution 32.78% followed by pH while AC dosage has not a remarkable effect due to the good characteristics of AC derived from avocado seeds. Increasing current density gives be
... Show More