Preferred Language
Articles
/
joe-1553
Numerical Investigation of Aerodynamic Characteristics of Supercritical RAE2822 Airfoil with Gurney Flap
...Show More Authors

Gurney flap (GF) is well-known as one of the most attractive plain flaps because of the simple configuration and effectiveness in improving the lift of the airfoil. Many studies were conducted, but the effects of GF on the various airfoil types need to be further investigated. This study aimed to clarify the effect of GF in the case of the supercritical airfoil RAE2822. This research includes a steady, two-dimensional computational investigation carried out on the supercritical airfoil type RAE-2822 to analyze Gurney flap (GF) effects on the aerodynamic characteristics of this type of airfoil utilizing the Spalart-Allmaras turbulence model within the commercial software Fluent. The airfoil with the Gurney flap was analyzed for three different height values 1%c, 2%c, and 3%c, and five mounting angles (30°,45°,60°,75°, and 90°) with the axial chord for angles of attack (-1°,-2°,-3°,0°,1°,2°,3°). The calculations showed that when GF height is increased, the maximum suction pressure on the upper surface increases by 25.4%, 36.5%, and 68.83% when the height of the Gurney flap is 1%c, 2%c, and 3%c, respectively, compared with that on the airfoil without GF. The lift coefficient was also increased, and the shock waves moved downward by increasing GF height. As Gurney flap heights increase, the drag coefficient increases gradually for positive angles of attack but for negative angles of attack. The drag coefficient also decreases with increasing the GF heights. As long as the angle of the mounting is between 45o and 90o, the lift coefficient does not differ on a large scale. For mounting angles less than 45o, the lift coefficient drops quite fast. As a result, reducing the Gurney flap’s lift enhancement and the drag coefficient increases gradually for positive angles of attack, but for negative angles, it can be noted that the drag coefficient decreases with increasing the mounting angles of GF. The calculated values of the lift and drag coefficients with an attack angle and pressure coefficient compared with the experimental values, and a good agreement was noticed. 

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 18 2022
Journal Name
Materials Science Forum
The Effect of Gamma Radiation on the Manufactured HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>2.4</sub>Ag<sub>0.6</sub>O<sub>8+δ</sub> Compound
...Show More Authors

In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref