Preferred Language
Articles
/
joe-1553
Numerical Investigation of Aerodynamic Characteristics of Supercritical RAE2822 Airfoil with Gurney Flap
...Show More Authors

Gurney flap (GF) is well-known as one of the most attractive plain flaps because of the simple configuration and effectiveness in improving the lift of the airfoil. Many studies were conducted, but the effects of GF on the various airfoil types need to be further investigated. This study aimed to clarify the effect of GF in the case of the supercritical airfoil RAE2822. This research includes a steady, two-dimensional computational investigation carried out on the supercritical airfoil type RAE-2822 to analyze Gurney flap (GF) effects on the aerodynamic characteristics of this type of airfoil utilizing the Spalart-Allmaras turbulence model within the commercial software Fluent. The airfoil with the Gurney flap was analyzed for three different height values 1%c, 2%c, and 3%c, and five mounting angles (30°,45°,60°,75°, and 90°) with the axial chord for angles of attack (-1°,-2°,-3°,0°,1°,2°,3°). The calculations showed that when GF height is increased, the maximum suction pressure on the upper surface increases by 25.4%, 36.5%, and 68.83% when the height of the Gurney flap is 1%c, 2%c, and 3%c, respectively, compared with that on the airfoil without GF. The lift coefficient was also increased, and the shock waves moved downward by increasing GF height. As Gurney flap heights increase, the drag coefficient increases gradually for positive angles of attack but for negative angles of attack. The drag coefficient also decreases with increasing the GF heights. As long as the angle of the mounting is between 45o and 90o, the lift coefficient does not differ on a large scale. For mounting angles less than 45o, the lift coefficient drops quite fast. As a result, reducing the Gurney flap’s lift enhancement and the drag coefficient increases gradually for positive angles of attack, but for negative angles, it can be noted that the drag coefficient decreases with increasing the mounting angles of GF. The calculated values of the lift and drag coefficients with an attack angle and pressure coefficient compared with the experimental values, and a good agreement was noticed. 

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Oct 31 2024
Journal Name
Archive Of Mechanical Engineering
Computational analysis of SD7037 airfoil with plain flap
...Show More Authors

The impact of a simple trailing-edge plain flap on the aerodynamics of the SD7037 airfoil have been studied in this paper using computational fluid dynamics at Reynolds number of 3×105 across various low angles of attack and flap deflection angles. The computational model was evaluated by using Star CCM+ software with κ--ω SST turbulence and gamma transition model to solve Navier-Stokes equations. The accuracy of the computational model has been confirmed through comparison with experimental data, showing a high level of agreement at low angles of attack. The findings revealed that specific combinations of angles of attack and flap deflection angles could increase the lift-to-drag ratio by over 70% compared to baseline conditions, benefi

... Show More
Crossref
Publication Date
Wed Feb 05 2003
Journal Name
. Sc. Conf. Of The College 5th Of Eng. Univ. Of Baghdad 2003
COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION OF THE AERODYNAMIC CHARACTERISTICS FOR A FORWARD SWEPT WING AIRCRAFT
...Show More Authors

The aerodynamic characteristics of the forward swept wing aircraft have been studied theoretically and experimentally. Low order panel method with the Dirichlet boundary condition have been used to solve the case of the steady, inviscid and compressible flow. Experimentally, a model was manufactured from wood to carry out the tests. The primary objective of the experimental work was the measurements of the wake dimensions and orientation, velocity defect along the wake and the wake thickness. A blower type low speed (open jet) wind tunnel was used in the experimental work. The mean velocity at the test section was (9.3 m/s) and the Reynolds number based on the mean aerodynamic chord and the mean velocity was (0.46x105). The measurements sho

... Show More
View Publication
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Experimental and Numerical Analysis of Incompressible Flow over an Iced Airfoil
...Show More Authors

Determining the aerodynamic characteristics of iced airfoil is an important step in aircraft design.  The goal of this work is to study experimentally and numerically an iced airfoil to assess the aerodynamic penalties associated with presence of ice on the airfoil surface. Three iced shapes were tested on NACA 0012 straight wing at zero and non-zero angles of attack, at Reynolds No. equal to (3.36*105). The 2-D steady state continuity and momentum equations have been solved utilizing finite volume method to analyze the turbulent flow over a clean and iced airfoil. The results show that the ice shapes affected the aerodynamic characteristics due to the change in airfoil shape. The experimental results show that the horn iced airfoil

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Numerical Study of Optimum Configuration of Unconventional Airfoil with Steps and Rotating Cylinder for Best Aerodynamics Performance
...Show More Authors

Numerical study of separation control on symmetrical airfoil, four digits (NACA

0012) by using rotating cylinder with double steps on its upper surface based on the computation of Reynolds-average Navier- Stokes equations was carried out to find the optimum configuration of unconventional airfoil for best aerodynamics performance. A model based on collocated Finite Volume Method was developed to solve the governing equations on a body-fitted coordinate system. A revised (k-w) model was proposed as a known turbulence model. This model was adapted to simulate the control effects of rotating cylinder. Numerical solutions were performed for flow around unconventional airfoil with cylinder to main stream velocities ratio in the range

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 24 2024
Journal Name
Journal Of Engineering
Aerodynamic Characteristics Comparison between Spiroid and Blended Winglets
...Show More Authors

A numerical and experimentally investigation for two types of winglets (spiroid and blended), which are used to reduce the induced drag caused by the trailing vortices were presented and discussed in this work. The SOLIDWORK 2016 was used to model a rectangular wing geometry of NACA2415 cross-sectional airfoil with blended and spiroid airfoils (2415 and 0012). The steady, incompressible N.S equations with standard (

View Publication
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Aerodynamic Characteristics Comparison between Spiroid and Blended Winglets
...Show More Authors

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Mar 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Numerical Computations of Transonic Critical Aerodynamic Behavior of a Realistic Artillery Projectile
...Show More Authors

The determination of aerodynamic coefficients by shell designers is a critical step in the development of any projectile design. Of particular interest is the determination of the aerodynamic coefficients at transonic speeds. It is in this speed regime that the critical aerodynamic behavior occurs and a rapid change in the aerodynamic coefficients is observed. Two-dimensional, transonic, flow field computations over projectiles have been made using Euler equations which were used for solution with no special treatment required. In this work a solution algorithm is based on finite difference MacCormack’s technique for solving mixed subsonic-supersonic flow problem. Details of the asymmetrically located shock waves on the projectiles hav

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 31 2017
Journal Name
Journal Of Engineering
Aerodynamic Characteristics of a Rectangular Wing Using Non-LinearVortex Ring Method
...Show More Authors

The aerodynamic characteristics of general three-dimensional rectangular wings are considered using non-linear interaction between two-dimensional viscous-inviscid panel method and vortex ring method. The potential flow of a two-dimensional airfoil by the pioneering Hess & Smith method was used with viscous laminar, transition and turbulent boundary layer to solve flow about complex configuration of airfoils including stalling effect. Viterna method was used to extend the aerodynamic characteristics of the specified airfoil to high angles of attacks. A modified vortex ring method was used to find the circulation values along span wise direction of the wing and then interacted with sectional circulation obtained by Kutta-Joukowsky the

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 24 2024
Journal Name
Journal Of Engineering
Aerodynamic Characteristics of a Rectangular Wing Using Non-Linear Vortex Ring Method
...Show More Authors

The aerodynamic characteristics of general three-dimensional rectangular wings are considered using non-linear interaction between two-dimensional viscous-inviscid panel method and vortex ring method. The potential flow of a two-dimensional airfoil by the pioneering Hess & Smith method was used with viscous laminar, transition and turbulent boundary layer to solve flow about complex configuration of airfoils including stalling effect. Viterna method was used to extend the aerodynamic characteristics of the specified airfoil to high angles of attacks. A modified vortex ring method was used to find the circulation values along span wise direction of the wing and then interacted with sectional circulation obtained by Kutta-Joukowsky theorem of

... Show More
View Publication
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Numerical Investigation of Physical Parameters in Cardiac Vessels as a New Medical Support Science for Complex Blood Flow Characteristics
...Show More Authors

This study proposes a mathematical approach and numerical experiment for a simple solution of cardiac blood flow to the heart's blood vessels. A mathematical model of human blood flow through arterial branches was studied and calculated using the Navier-Stokes partial differential equation with finite element analysis (FEA) approach. Furthermore, FEA is applied to the steady flow of two-dimensional viscous liquids through different geometries. The validity of the computational method is determined by comparing numerical experiments with the results of the analysis of different functions. Numerical analysis showed that the highest blood flow velocity of 1.22 cm/s occurred in the center of the vessel which tends to be laminar and is influe

... Show More
View Publication Preview PDF
Scopus Crossref