Preferred Language
Articles
/
joe-153
Non-Linear Behavior of Strengthened Steel-Concrete Composite Beams with Partial Interaction of Shear Connectors
...Show More Authors

In this research a theoretical study has been carried out on the behavior and strength of simply supported composite beams strengthened by steel cover plate taking into consideration partial interaction of shear connectors and nonlinear behavior of the materials and shear connectors. Following the procedure that already has been adopted by Johnson (1975), the basic differential equations of equilibrium and compatibility were reduced to single differential equation in terms of interface slip between concrete slab and steel beam. Furthermore, in order to consider the nonlinear behavior of steel, concrete and shear connectors, the basic equation was rearranged so that all terms related to materials are isolated in the equation from the main variable (interface slip). The exact solution was obtained by considering appropriate boundary conditions according to load types and location. A computer program has been written using MATLAB R2013a to simplify the process of computation of section properties where the load applied iteratively from zero to ultimate capacity of the beam, and the results are compared with available experimental results which show good agreement.

As the composite section reaches its ultimate capacity in bending and lower flange start yielding due to excessive loading, cover plate are furnished in order to increase load carrying capacity of beam. In the process of strengthening, using of cover plate as a percent of the area of lower flange of steel section equal to 41%, 82% and 164% will increase the beam carrying capacity by 15%, 30% and 43% respectively; also using the same above mentioned area of cover plate will reduce the central deflection by 59%, 72% and 80% respectively.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Studying Sustainable Concrete Block Efficiency Production: A Review
...Show More Authors

Worldwide, enormous amounts of waste cause major environmental issues, including scrap tires and plastic, and large waste, a consequence of the demolition of buildings, including crushed concrete, crushed clay bricks, and crushed thermo-stone. From that point, it’s possible to consider that the recycling processes for these materials and using them in the manufacturing field will reduce the adverse effects on the environment of these wastes and the consumption of natural resources. Sustainable concrete blocks can be considered as one of the products produced by using these materials as partial volume replacement of the coarse, fine aggregate, or cement content, considering their dry density, workability, absorption, compressive st

... Show More
Crossref (6)
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Engineering
A Review in Sustainable Plastic Waste in Concrete
...Show More Authors

Recently times, industrial development has increased, including plastic industries, and since plastic has a very long analytical life, it will cause environmental pollution. Therefore studies have resorted to reusing recycled plastic waste (sustainable plastic) to produce environmentally friendly concrete (green concrete). In this research, some studies were reviewed and then summarized into several things, including the percentage of plastic replacement from the aggregate and the effect of this percentage on the fresh properties of concrete, such as the workability and the effect of plastic waste on the hardening properties of concrete such as dry density, compressive, tensile and flexural strength.

View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Mon Jan 11 2021
Journal Name
Earth And Environmental Science
Impact Resistance of Limestone Cement Self Compacting Concrete Reinforced by Locally Available Grids
...Show More Authors

Impact strength of self-compacted concrete is a field of interest, mostly when the concrete is produced from sustainable materials. This research's main objective is to clarify the ability to use two types of Portland limestone cement (Karasta and Tasluja) in self compacted concrete under impact loading, further to the economic and environmental benefits of the limestone cement. The impact loading was applied by a low-speed test, using the drop ball on concrete. Moreover, the study reveals the resistance of the grids reinforced concrete to impact loading by using polymer grid, and steel grid reinforced concrete slabs. Mixes reinforced by steel mesh had the highest results, indicating that the steel mesh was more robust because it had

... Show More
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering
Developing a Model to Estimate the Productivity of Ready Mixed Concrete Batch Plant
...Show More Authors

Productivity estimating of ready mixed concrete batch plant is an essential tool for the successful completion of the construction process. It is defined as the output of the system per unit of time. Usually, the actual productivity values of construction equipment in the site are not consistent with the nominal ones. Therefore, it is necessary to make a comprehensive evaluation of the nominal productivity of equipment concerning the effected factors and then re-evaluate them according to the actual values.

In this paper, the forecasting system was employed is an Artificial Intelligence technique (AI). It is represented by Artificial Neural Network (ANN) to establish the predicted model to estimate wet ready mixe

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Solving high sulfate content of sand used in concrete by magnetic water process
...Show More Authors

View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Structural Durability & Health Monitoring
Seismic Analysis of Reinforced Concrete Silos under Far-Field and Near-Fault Earthquakes
...Show More Authors

View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Some Properties of Carbon Fiber Reinforced Magnetic Reactive Powder Concrete Containing Nano Silica
...Show More Authors

         This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS) had higher compressive strength, modulus of rupture, splitting tension, str

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 28 2019
Journal Name
Journal Of Engineering
Frequency Domain Analysis for Geometric Nonlinear Seismic Response of Tall Reinforced Concrete Buildings
...Show More Authors

This paper aims to study the second-order geometric nonlinearity effects of P-Delta on the dynamic response of tall reinforced concrete buildings due to a wide range of earthquake ground motion forces, including minor earthquake up to moderate and strong earthquakes. The frequency domain dynamic analysis procedure was used for response assessment. Reinforced concrete building models with different heights up to 50 stories were analyzed. The finite element software ETABS (version 16.0.3) was used to analyze reinforced concrete building models.

The study reveals that the percentage increase in buildings' sway and drift due to P-Delta effects are nearly constant for specific building height irrespective of the seism

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Engineering
Reinforcement of Asphalt Concrete by Polyester Fibers to Improve Flexural Bending Fatigue Resistance
...Show More Authors

Reinforcing asphalt concrete with polyester fibers considered as an active remedy to alleviate the harmful impact of fatigue deterioration. This study covers the investigation of utilizing two shapes of fibers size, 6.35 mm by 3.00 mm and 12.70 mm by 3.00 mm with mutual concentrations equal to 0.25 %, 0.50 % and 0.75 % by weight of mixture. Composition of asphalt mixture consists of different optimum (40-50) asphalt cement content, 12.50 mm nominal aggregate maximum size with limestone dust as a filler. Following the traditional asphalt cement and aggregate tests, three essential test were carried out on mixtures, namely: Marshall test (105 cylindrical specimens), indirect tensile strength test (21 cylindrical specimens)

... Show More
View Publication
Publication Date
Wed Jul 04 2018
Journal Name
Civil Engineering Journal
Finite Element Analysis of Concrete Beam under Flexural Stresses Using Meso-Scale Model
...Show More Authors

Two dimensional meso-scale concrete modeling was used in finite element analysis of plain concrete beam subjected to bending. The plane stress 4-noded quadrilateral elements were utilized to model coarse aggregate, cement mortar. The effect of aggregate fraction distribution, and pores percent of the total area – resulting from air voids entrapped in concrete during placement on the behavior of plain concrete beam in flexural was detected. Aggregate size fractions were randomly distributed across the profile area of the beam. Extended Finite Element Method (XFEM) was employed to treat the discontinuities problems result from double phases of concrete and cracking that faced during the finite element analysis of concrete beam. Crac

... Show More
Crossref (6)
Clarivate Crossref