Although many technological improvements are occurring in power production worldwide, power plants in third world countries are still using old technologies that are causing thermal pollution to the water bodies. Power facilities that dump hot water into water bodies are damaging aquatic life. In the study, the impact of the Al Dora thermal power plant on a nearby stretch of Tigris River in Baghdad city was assessed by measuring the temperature of the disposed of hot water in various cross-sections of the selected stretch of Tigris River, including measuring the thermal mixing length. The measurements were conducted in winter, spring, and summer. For field measurements, it was found that the impact of recovery distances extended to 1500, 1810, and 2450 m in winter, spring, and summer seasons, respectively. Also, the impact of the thermal pollution was simulated using the CFD COMSOL model. When these values were compared with the predicted values, the measured values were found smaller than the predicted by using the heat equation for temperature recovery distances. Also, the simulation included the impact of reducing the velocity of the disposed of hot water on the temperature distribution and mixing length in the studied stretch of Tigris River. Simulation results show that when the velocity of the disposed of hot water was reduced from 1.6 to 0.5 m/s, the thermal mixing in the Tigris River improved. The estimation of dissolved oxygen concentrations was found to range from 6.9 to 10.7 mg/l, which is higher than the critical concentration of 5 mg/l, which is required for aquatic life.
The research involves using phenol – formaldehyde (Novolak) resin as matrix for making composite material, while glass fiber type (E) was used as reinforcing materials. The specimen of the composite material is reinforced with (60%) ratio of glass fiber.
The impregnation method is used in test sample preparation, using molding by pressure presses.
All samples were exposure to (Co60) gamma rays of an average energy (2.5)Mev. The total doses were (208, 312 and 728) KGy.
The mechanical tests (bending, bending strength, shear force, impact strength and surface indentation) were performed on un irradiated and irrad
... Show MoreThe possibility of using activated carbon developed from date palm seeds wastes as a permeable reactive barrier (PRB) to remove copper from polluted shallow groundwater was investigated. The activated carbon has been developed from date palm seeds by dehydrating methods using concentrated sulfuric acid. Batch tests were performed to characterize the equilibrium sorption properties of new activated carbon in copper-containing aqueous solutions, while the sandy soil (aquifer) was assumed to be inert. Under the studied conditions, the Langmuir isotherm model gives a better fit for the sorption data of copper by activated carbon than other models. At a pilot scale, One-dimensional column experiments were performed, and an integrated model ba
... Show MoreThe aim of the current study was to develop a nanostructured double-layer for hydrophobic molecules delivery system. The developed double-layer consisted of polyethylene glycol-based polymeric (PEG) followed by gelatin sub coating of the core hydrophobic molecules containing sodium citrate. The polymeric composition ratio of PEG and the amount of the sub coating gelatin were optimized using the two-level fractional method. The nanoparticles were characterized using AFM and FT-IR techniques. The size of these nano capsules was in the range of 39-76 nm depending on drug loading concentration. The drug was effectively loaded into PEG-Gelatin nanoparticles (≈47%). The hydrophobic molecules-release characteristics in terms of controlled-releas
... Show MoreIn this paper deals with the effect laser irradiation on the optical properties of cobalt oxide (CoO2) thin films and that was prepared using semi computerized spray pyrolysis technique. The films deposited on glass substrate using such as an ideal value concentration of (0.02)M with a total volume of 100 ml. With substrate temperature was (350 C), spray rate (15 ml/min).The XRD diffraction given polycrystalline nature with Crystal system trigonal (hexagonal axes). The obtained films were irradiated by continuous green laser (532.8 nm) with power 140 mW for different time periods is 10 min,20min and 30min. The result was that the optical properties of cobalt oxide thin films affe