In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Vector Machine, Naïve Bayes, Decision Tree, Random Forest, Stochastic Gradient Descent, Gradient Boosting and Ada Boosting classifiers were designed. Performance-wise analysis using Confusion Matrix metric carried out and comparisons between the classifiers were a due. As a case study Information Gain, Pearson and F-test feature selection techniques were used and the obtained results compared to models that use all the features. One unique outcome is that the Random Forest classifier achieves the best performance with an accuracy of 99.96% and an error margin of 0.038%, which supersedes other classifiers. Using 80% reduction in features and parameters extraction from the packet header rather than the workload, a big performance advantage is achieved, especially in online environments.
This study included the estimation of growth rate, viability and morphological changes in different culture media (NNN, P-Y, RPMI- 1640, and Panmed). Promastigotes cultured in RPMI-1640 showed maximal growth rate after (2, 4, 6) days of cultivation (27.26 ± 0.05), (172.20 ± 0.1) and (343.81 ± 1.48) million parasites / ml for each day respectively, while P-Y media gave the highest mean of growth rat after (8 and 10) days of cultivation (307.16 ± 1.67) and (303.5 ± 4.96) million parasites / ml for each day respectively. P-Y medium showed the maximal percentage of viability after (2, 4, 6, 8, and 10) days of cultivation (99.76 ± 0.5) %, (98.30 ± 0.17) %, (96.1 ± 0.1) %, (92.5 ± 0.52) % and (87.26 ± 0.05) % for each day respectively.
... Show More
Abstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w
... Show MoreIn this research, a variable stiffness actuator is proposed to enhance the damping of the mechanical vibrating system. The frequency response analysis of the vibrating system is dependant in order to analyze and synthesis this semi-active damping, where the suggested process is using active filter to estimate the present frequency of the vibration system, and this will limit the value of the stiffness of the vibrated system. Two active filter s are needed, low-pass-filter (LPF) to choose the higher stiffness of the actuator at small frequencies as well as more damping and high-pass-filter (HPF) to choose the lower stiffness of the actuator at high frequencies as well as more damping, and so
... Show Moreملخص البحث: تناول البحث الحالي:(أنظمة التكوين الجمالي للكتابات والنصوص في النحت العربي المعاصر)، عددا من الأفكار الأساسية التي تمثل المادة النظرية لتفسير ظاهرة الكتابة في الفن بشكل عام وفي فن النحت بشكل خاص، ولكشف أنظمة التكوين الجمالي وأنواعها المتعددة من خلال فحص بعض النصوص البصرية للفنانين العرب المعاصرين، فقد جاء هذا البحث في أربعة فصول. خصص الفصل الأول: الإطار المنهجي للبحث لبيان مشكلة البحث، وأهم
... Show MoreAstronomers have known since the invention of the telescope that atmospheric turbulence affects celestial images. So, in order to compensate for the atmospheric aberrations of the observed wavefront, an Adaptive Optics (AO) system has been introduced. The AO can be arranged into two systems: closedloop and open-loop systems. The aim of this paper is to model and compare the performance of both AO loop systems by using one of the most recent Adaptive Optics simulation tools, the Objected-Oriented Matlab Adaptive Optics (OOMAO). Then assess the performance of closed and open loop systems by their capabilities to compensate for wavefront aberrations and improve image quality, also their effect by the observed optical bands (near-infrared band
... Show MoreIn this article, a continuous terminal sliding mode control algorithm is proposed for servo motor systems. A novel full-order terminal sliding mode surface is proposed based on the bilimit homogeneous property, such that the sliding motion is finite-time stable independent of the system’s initial condition. A new continuous terminal sliding mode control algorithm is proposed to guarantee that the system states reach the sliding surface in finitetime. Not only the robustness is guaranteed by the proposed controller but also the continuity makes the control algorithm more suitable for the servo mechanical systems. Finally, a numerical example is presented to depict the advantages of the proposed control algorithm. An application in the rota
... Show MoreIn this paper, a fusion of K models of full-rank weighted nonnegative tensor factor two-dimensional deconvolution (K-wNTF2D) is proposed to separate the acoustic sources that have been mixed in an underdetermined reverberant environment. The model is adapted in an unsupervised manner under the hybrid framework of the generalized expectation maximization and multiplicative update algorithms. The derivation of the algorithm and the development of proposed full-rank K-wNTF2D will be shown. The algorithm also encodes a set of variable sparsity parameters derived from Gibbs distribution into the K-wNTF2D model. This optimizes each sub-model in K-wNTF2D with the required sparsity to model the time-varying variances of the sources in the s
... Show MoreThis paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them