Preferred Language
Articles
/
joe-1529
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Vector Machine, Naïve Bayes, Decision Tree, Random Forest, Stochastic Gradient Descent, Gradient Boosting and Ada Boosting classifiers were designed. Performance-wise analysis using Confusion Matrix metric carried out and comparisons between the classifiers were a due. As a case study Information Gain, Pearson and F-test feature selection techniques were used and the obtained results compared to models that use all the features. One unique outcome is that the Random Forest classifier achieves the best performance with an accuracy of 99.96% and an error margin of 0.038%, which supersedes other classifiers. Using 80% reduction in features and parameters extraction from the packet header rather than the workload, a big performance advantage is achieved, especially in online environments.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Aug 18 2018
Journal Name
Journal Of Engineering And Applied Sciences
Performance Evaluation of Transport Protocols for Mobile Ad Hoc Networks
...Show More Authors

Mobile Ad hoc Networks (MANETs) is a wireless technology that plays an important role in several modern applications which include military, civil, health and real-time applications. Providing Quality of Service (QoS) for this application with network characterized by node mobility, infrastructure-less, limitation resource is a critical issue and takes greater attention. However, transport protocols effected influential on the performance of MANET application. This study provides an analysis and evaluation of the performance for TFRC, UDP and TCP transport protocols in MANET environment. In order to achieve high accuracy results, the three transport protocols are implemented and simulated with four different network topology which are 5, 10

... Show More
View Publication
Publication Date
Thu Jun 16 2022
Journal Name
Clean Technologies
Performance Evaluation of Roughened Solar Air Heaters for Stretched Parameters
...Show More Authors

Crossref (2)
Crossref
Publication Date
Mon Nov 30 2020
Journal Name
Iraqi Geological Journal
EXPERIMENTAL STUDY OF MICRO SILICA BEHAVIOR AND ITS EFFECT ON IRAQI CEMENT PERFORMANCE BY USING X-RAY FLUORESCENCE ANALYSIS
...Show More Authors

The cement slurry is a mixture of cement, water and additives which is established at the surface for injecting inside hole. The compressive strength is considered the most important properties of slurry for testing the slurry reliability and is the ability of slurry to resist deformation and formation fluids. Compressive strength is governed by the sort of raw materials that include additives, cement structure, and exposure circumstances. In this work, we use micro silica like pozzolanic materials. Silica fume is very fine noncrystalline substantial. Silica fume can be utilized like material for supplemental cementations for increasing the compressive strength and durability of cement. Silica fume has very fine particles size less

... Show More
View Publication
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Mon Dec 30 2019
Journal Name
College Of Islamic Sciences
Qur'anic intentions in the Prophet’s Investigation (Selected models)
...Show More Authors

This research deals with the role of Qur’anic intents in facilitating and facilitating the understanding of the reader and the seeker of knowledge of the verses of the Holy Qur’an, particularly in the doctrinal investigations (prophecies), and the feature that distinguishes reference to the books of the intentions or the intentional interpretations is that it sings from referring to the books of speakers and delving into their differences in contractual issues and facilitating access To the meanings, purposes and wisdom that the wise street wanted directly from the rulings and orders contained in the verses of the wise Qur’an.

View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Time Series Forecasting by Using Box-Jenkins Models
...Show More Authors

    In this paper we introduce a brief review about Box-Jenkins models. The acronym ARIMA stands for “autoregressive integrated moving average”. It is a good method to forecast for stationary and non stationary time series. According to the data which obtained from Baghdad Water Authority, we are modelling two series, the first one about pure water consumption and the second about the number of participants. Then we determine an optimal model by depending on choosing minimum MSE as criterion.

View Publication Preview PDF
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Microgrid Integration Based on Deep Learning NARMA-L2 Controller for Maximum Power Point Tracking
...Show More Authors

This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength.  This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.

Moreover, the proposed controller i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 18 2018
Journal Name
Kant
SOME METHODOLOGICAL OF LEARNING TENNIS STUDENTS
...Show More Authors

This study is due to insufficient development of the issues of initial training in tennis at youthful (student) age. Objective: development of a methodological and scientific-methodological base of students' tennis with current trends in tennis. Summing up the best practices of modern tennis, we came to the conclusion that the formation of the art of reflection backhands in teaching beginner students of sports specialization to achieve future success. In modern conditions in the development of Russian tennis student opens the possibility of using new technologies and programs. Using these approaches, we have developed a training program and tested students' tennis in the pedagogical experiment, which resulted in its effectiveness.

Publication Date
Sat Oct 01 2011
Journal Name
Iraqi Journal Of Physics
Stand-Alone PV Generator Comparing with Conventional Systems for Electrification of Small Social Centres in Remote Area
...Show More Authors

Many isolated rural communities are located in regions where there is an abundant and reliable supply of solar energy, but where the distance to the nearest power station is many tens or even hundreds of kilometre. It is therefore mainly in these areas that rural electrification is now being provided by PV generators. since Stand-Alone PV generator can offer the most cost-effective and reliable option for providing power needed in remote places. Accordingly these isolated rural canters are fitted with PV for lighting, a refrigerator, a television and socket to supply kitchen appliances

View Publication Preview PDF