In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Vector Machine, Naïve Bayes, Decision Tree, Random Forest, Stochastic Gradient Descent, Gradient Boosting and Ada Boosting classifiers were designed. Performance-wise analysis using Confusion Matrix metric carried out and comparisons between the classifiers were a due. As a case study Information Gain, Pearson and F-test feature selection techniques were used and the obtained results compared to models that use all the features. One unique outcome is that the Random Forest classifier achieves the best performance with an accuracy of 99.96% and an error margin of 0.038%, which supersedes other classifiers. Using 80% reduction in features and parameters extraction from the packet header rather than the workload, a big performance advantage is achieved, especially in online environments.
Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction informati
... Show MoreIn this study, active knife and fixed knife of single-row disc silage machine has three different clearance C1, C2 and C3 (1, 3 and 5 mm) and it is tried in three different working speed V1, V2 and V3 (1.8, 2.5 and 3.7 km / h) and PTO speed (540 min-1) and machine's fuel consumption (l/h), average power consumption (kW), field energy consumption (kW/da), product energy consumption (kW/t), field working capacity (da/h), product working capacity (t/h) and Chopping size distribution characteristics of the fragmented material were determined. It has been found that knife-counter knife clearances smaller than 3 mm (1 mm) and larger (5 mm) have a negative effect on machine performance in general. In terms of fuel and power consumptions, the m
... Show MoreIn this study, the harvest of maize silage with the cross double row sowing method were tested with a single row disc silage machine in two different PTO applications (540 and 540E min-1) and at two different working speeds v1, v2 (1.8 and 2.5 km h-1). The possibilities of harvesting with a single row machine were revealed, and performance characteristics such as hourly fuel consumption, field-product fuel consumption and PTO power consumption were determined in the trials. The best results in terms of hourly fuel consumption and PTO power consumption were determined in the 540E PTO application and V1 working speed. When the fuel consumption of the field-product is evaluated, it is obtained with V2 working speed and 540E PTO application. As
... Show MoreDistributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks
... Show MoreSentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show MoreAnalyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col
... Show MoreMassive multiple-input multiple-output (m-MIMO) is considered as an essential technique to meet the high data rate requirements of future sixth generation (6G) wireless communications networks. The vast majority of m-MIMO research has assumed that the channels are uncorrelated. However, this assumption seems highly idealistic. Therefore, this study investigates the m-MIMO performance when the channels are correlated and the base station employs different antenna array topologies, namely the uniform linear array (ULA) and uniform rectangular array (URA). In addition, this study develops analyses of the mean square error (MSE) and the regularized zero-forcing (RZF) precoder under imperfect channel state information (CSI) and a realist
... Show More