In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Vector Machine, Naïve Bayes, Decision Tree, Random Forest, Stochastic Gradient Descent, Gradient Boosting and Ada Boosting classifiers were designed. Performance-wise analysis using Confusion Matrix metric carried out and comparisons between the classifiers were a due. As a case study Information Gain, Pearson and F-test feature selection techniques were used and the obtained results compared to models that use all the features. One unique outcome is that the Random Forest classifier achieves the best performance with an accuracy of 99.96% and an error margin of 0.038%, which supersedes other classifiers. Using 80% reduction in features and parameters extraction from the packet header rather than the workload, a big performance advantage is achieved, especially in online environments.
The importance of the research is evident in the use of exercises with the training device, which is one of the modern techniques in teaching the abilities of players, especially in teaching the skill of the backhand, and in improving the accuracy of the performance of players and increasing the contribution to the formation of a base for the game for players who have a good level of learning and upgrading the game to reach a certain achievement, and the research issue was represented in the lack of accuracy in sending balls to the required areas to achieve points, especially in the performance of the skill of the backhand due to the speed of play during the course of the match, and the study aimed to introduce modern technology usi
... Show MoreHierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil
... Show MoreSocial interaction is the platform that enables people to connect and practice language. Active listening stimulates them to understand the language they are speaking. The problem of the study highlights that less attention to listening among speaking, reading, and writing skills causes the weakness of collaborative learning. This paper contributes to characterizing the effectiveness of collaborative learning in developing learner’s listening skills. It aims to underscore the role of target language learners as members of the learning groups and of the teacher in the collaborative learning process. 130 Iraqi EFL teachers from different colleges at the University of Baghdad participated in this study. The scores in the statistical data wer
... Show MoreThis study investigated three aims for the extent of effectiveness of the two systems in educational development of educators. To achieve this, statistical analysis was performed between the two groups that consisted of (26) participants of the electronic teaching method and (38) participants who underwent teaching by the conventional electronic lecture. The results indicated the effectiveness of the “electronic teaching method” and the “electronic lecture method” for learning of the participants in educational development. Also, it indicated the level of equivalence from the aspect of effectiveness of the two methods and at a confidence level of (0.05). This study reached several conclusions, recommendations, and suggestio
... Show MoreThe majority of Arab EFL (English as a Foreign Language) learners struggle with speaking English fluency. Iraqi students struggle to speak English confidently due to mispronunciation, grammatical errors, short and long pauses while speaking or feeling confused in normal conversations. Collaborative learning is crucial to enhance student’s speaking skills in the long run. This study aims to state the importance of collaborative learning as a teaching method to EFL learners in the meantime. In this quantitative and qualitative study, specific focus is taken on some of Barros’s views of collaborative learning as a teamwork and some of Pattanpichet’s speaking achievements under four categories: academic benefits, social benefits,
... Show MoreIn this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show MoreThe levels of lead (pb), copper (cu), cobalt (co) and cadmium (cd) were determined in different kinds of milk and the health risks were evaluated. The mean levels were 0.73±0.21, 0.06±0.01, 0.12±0.01 and 0.14±0.01 ppm for these metals respectively. The levels of pb and cu were found to be insignificant differences (p<0.05), whereas the levels of co and cd, were no significant differences (p>0.05). The dry and liquid kinds of milk were different significantly (p<0.05), whereas the original, was no significant differences (p>0.05). The values for all metals were more than one. The metals pb and cd were detected at highest concentrations in most dry and liquid milk samples.
In the present study, a total of 245 flour samples were collected from 49 mills on both sides of Baghdad city (Al- Karkh and Al- Resafa), during the period from 1/6 - 1/12/ 2015 to detect the prolportion of iron added to the flour samples. It is found that only 45% of mills produced flour contain the prescribed percentage of iron (30-60 ppm) while 51.9% of the mills produced flour at rate is less or much more than the prescribed percentage, while only 4.1% of the mills were not added iron to the flour.