Preferred Language
Articles
/
joe-1529
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Vector Machine, Naïve Bayes, Decision Tree, Random Forest, Stochastic Gradient Descent, Gradient Boosting and Ada Boosting classifiers were designed. Performance-wise analysis using Confusion Matrix metric carried out and comparisons between the classifiers were a due. As a case study Information Gain, Pearson and F-test feature selection techniques were used and the obtained results compared to models that use all the features. One unique outcome is that the Random Forest classifier achieves the best performance with an accuracy of 99.96% and an error margin of 0.038%, which supersedes other classifiers. Using 80% reduction in features and parameters extraction from the packet header rather than the workload, a big performance advantage is achieved, especially in online environments.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 03 2023
Journal Name
Wireless Personal Communications
Application of Healthcare Management Technologies for COVID-19 Pandemic Using Internet of Things and Machine Learning Algorithms
...Show More Authors

View Publication
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Nano Fluid Detection for HPHE System Using Different Lasers
...Show More Authors

Among the different passive techniques heat pipe heat exchanger (HPHE) seems to be the most effective one for energy saving in heating ventilation and air conditioning system (HVAC). The applications for nanofluids with high conductivity are favorable to increase the thermal performance in HPHE. Even though the nanofluid has the higher heat conduction coefficient that dispels more heat theoretically but the higher concentration will make clustering .Clustering is a problem that must be solved before nanofluids can be considered for long-term practical uses. Results showed that the maximum value of relative power is 0.13 mW at nanofluid compared with other concentrations due to the low density of nanofluid at this concentration. For highe

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 23 2020
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
Heuristic and Meta-Heuristic Optimization Models for Task Scheduling in Cloud-Fog Systems: A Review
...Show More Authors

Nowadays, cloud computing has attracted the attention of large companies due to its high potential, flexibility, and profitability in providing multi-sources of hardware and software to serve the connected users. Given the scale of modern data centers and the dynamic nature of their resource provisioning, we need effective scheduling techniques to manage these resources while satisfying both the cloud providers and cloud users goals. Task scheduling in cloud computing is considered as NP-hard problem which cannot be easily solved by classical optimization methods. Thus, both heuristic and meta-heuristic techniques have been utilized to provide optimal or near-optimal solutions within an acceptable time frame for such problems. In th

... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Mon Mar 31 2025
Journal Name
The Iraqi Geological Journal
Evaluation of Machine Learning Techniques for Missing Well Log Data in Buzurgan Oil Field: A Case Study
...Show More Authors

The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 09 2023
Journal Name
2023 Ieee 34th International Symposium On Software Reliability Engineering Workshops (issrew)
Semantics-Based, Automated Preparation of Exploratory Data Analysis for Complex Systems
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Journal Of Engineering
An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers
...Show More Authors

With the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Parameters for Alkaloid detection in Catharanthus roseus tissue culture
...Show More Authors

    Tissue culture of Catharanthus  roseus  was established under many parameters to insure good results for detection of the alkaloids present in this plant . It was found that NItsch and Nitsch medium containing 8µM Benzyladeninpurine plus Naphalene acetic acid were the best and the callus of C.roseus left to grow in the dark and had much better influence for the production of Alkloids. The precursor phenylalanine showed a better result than other precursor( tryptophan ) . Abscisic acid has an inhibitory effect on the production of Alkaloid

View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Simplified Novel Approach for Accurate Employee Churn Categorization using MCDM, De-Pareto Principle Approach, and Machine Learning
...Show More Authors

Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date.  A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Discuss of Error Analysis of Gauss-Jordan Elimination For Linear Algebraic Systems
...Show More Authors

The paper establishes explicit representations of the errors and residuals of approximate
solutions of triangular linear systems by Jordan elimination and of general linear algebraic
systems by Gauss-Jordan elimination as functions of the data perturbations and the rounding
errors in arithmetic floating-point operations. From these representations strict optimal
componentwise error and residual bounds are derived. Further, stability estimates for the
solutions are discussed. The error bounds for the solutions of triangular linear systems are
compared to the optimal error bounds for the solutions by back substitution and by Gaussian
elimination with back substitution, respectively. The results confirm in a very

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 03 2018
Journal Name
Journal Of Engineering
Performance of Different Concatenated Coding Schemes for CDMA System
...Show More Authors

In this paper different channel coding and interleaving schemes in DS/CDMA system over multipath fading channel were used. Two types of serially concatenated coding were presented. The first one composed of Reed-Solomon as outer code, convolutional code as inner code and the interleaver between the outer and inner codes and the second consist of convolutional code as outer code, interleaved in the middle and differential code as an inner code. Bit error rate performance of different schemes in multipath fading channel was analyzed and compared. Rack receiver was used in DS/CDMA receiver to combine multipath components in order to enhance the signal to noise ratio at the receiver.

 

View Publication Preview PDF
Crossref