The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial voids ratio. Multi-layer perceptron training by the backpropagation algorithm was used in creating the network. It was found that both models can predict shear strength parameters for gypseous soils with good reliability. Sensitivity analysis of the first model indicated that dry unit weight and plasticity index have the most significant effect on the predicted cohesion. While in the second model, the results indicated that the gypsum content and plasticity index have the most significant effect on the predicted angle of internal friction.
<span>One of the main difficulties facing the certified documents documentary archiving system is checking the stamps system, but, that stamps may be contains complex background and surrounded by unwanted data. Therefore, the main objective of this paper is to isolate background and to remove noise that may be surrounded stamp. Our proposed method comprises of four phases, firstly, we apply k-means algorithm for clustering stamp image into a number of clusters and merged them using ISODATA algorithm. Secondly, we compute mean and standard deviation for each remaining cluster to isolate background cluster from stamp cluster. Thirdly, a region growing algorithm is applied to segment the image and then choosing the connected regi
... Show MoreIn this research estimated the parameters of Gumbel distribution Type 1 for Maximum values through the use of two estimation methods:- Moments (MoM) and Modification Moments(MM) Method. the Simulation used for comparison between each of the estimation methods to reach the best method to estimate the parameters where the simulation was to generate random data follow Gumbel distributiondepending on three models of the real values of the parameters for different sample sizes with samples of replicate (R=500).The results of the assessment were put in tables prepared for the purpose of comparison, which made depending on the mean squares error (MSE).
<p class="0abstract">Image denoising is a technique for removing unwanted signals called the noise, which coupling with the original signal when transmitting them; to remove the noise from the original signal, many denoising methods are used. In this paper, the Multiwavelet Transform (MWT) is used to denoise the corrupted image by Choosing the HH coefficient for processing based on two different filters Tri-State Median filter and Switching Median filter. With each filter, various rules are used, such as Normal Shrink, Sure Shrink, Visu Shrink, and Bivariate Shrink. The proposed algorithm is applied Salt& pepper noise with different levels for grayscale test images. The quality of the denoised image is evaluated by usi
... Show MoreRapid population growth and the development of industries result in an increase in solid waste. Glass, which represents a large proportion of solid waste, can be used in construction applications. The utilization of recycled glass waste in the asphalt mixture is considered an environmentally-friendly application. In this laboratory study, glass bottles were recycled by crushing, grinding, and sieving them into particles that pass through sieve No. 200 to be used as a partial replacement for the filler in the hot mixture asphalt of wearing course Type-A. The ratios (4, 4.3, 4.6, 4.9, 5.2,5.5) were used to determine the optimum asphalt content (OAC), and three ratios (30, 60, and 90) were used for the replacement of limestone powder filler to
... Show MoreObjective: This study goal was to screen participants from different settings in Baghdad for depression using Beck Depression Inventory (BDI) scale and identify factors influencing the levels of depression. Methods: This cross-sectional study included a convenience sample of 313 people from four settings (teaching hospital, college of medicine, college of pharmacy, and high school) in Baghdad, Iraq. The participants were screened using paper survey relying on the BDI scale during spring 2018. Using multiple linear regression analysis, we measured the association between depression scores and six participant factors. Results: The overall prevalence of depression in our sample was 57.2%. Female participants had higher BDI
... Show MoreAn experimental study on a KIA pride (SAIPA 131) car model with scale of 1:14 in the wind tunnel was made beside the real car tests. Some of the modifications to passive flow control which are (vortex generator, spoiler and slice diffuser) were added to the car to reduce the drag force which its undesirable characteristic that increase fuel consumption and exhaust toxic gases. Two types of calculations were used to determine the drag force acting on the car body. Firstly, is by the integrating the values of pressure recorded along the pressure taps (for the wind tunnel and the real car testing), secondly, is by using one component balance device (wind tunnel testing) to measure the force. The results show that, the average drag estimated on
... Show MoreIn this paper, we have been used the Hermite interpolation method to solve second order regular boundary value problems for singular ordinary differential equations. The suggest method applied after divided the domain into many subdomains then used Hermite interpolation on each subdomain, the solution of the equation is equal to summation of the solution in each subdomain. Finally, we gave many examples to illustrate the suggested method and its efficiency.
Aspect-based sentiment analysis is the most important research topic conducted to extract and categorize aspect-terms from online reviews. Recent efforts have shown that topic modelling is vigorously used for this task. In this paper, we integrated word embedding into collapsed Gibbs sampling in Latent Dirichlet Allocation (LDA). Specifically, the conditional distribution in the topic model is improved using the word embedding model that was trained against (customer review) training dataset. Semantic similarity (cosine measure) was leveraged to distribute the aspect-terms to their related aspect-category cognitively. The experiment was conducted to extract and categorize the aspect terms from SemEval 2014 dataset.
Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can pre
... Show More