Preferred Language
Articles
/
joe-1524
Prediction of Shear Strength Parameters of Gypseous Soil using Artificial Neural Networks
...Show More Authors

The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial voids ratio. Multi-layer perceptron training by the backpropagation algorithm was used in creating the network. It was found that both models can predict shear strength parameters for gypseous soils with good reliability. Sensitivity analysis of the first model indicated that dry unit weight and plasticity index have the most significant effect on the predicted cohesion. While in the second model, the results indicated that the gypsum content and plasticity index have the most significant effect on the predicted angle of internal friction.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Nov 29 2018
Journal Name
Civil Engineering Journal
Strength and Serviceability of Reinforced Concrete Deep Beams with Large Web Openings Created in Shear Spans
...Show More Authors

Deep beams are used in wide construction fields such as water tanks, foundations, and girders in multi-story buildings to provide certain areas free of columns. In practice it is quite often occurring to create web opening in deep beams to supply convenient passage of ventilation ducts, cable channels, gas and water pipes. Experimental studies of ten 10 deep beams were carried out, where two of them are control specimens without openings and eight with large web openings in the shear spans. The variables that have been adopted are the ratio of the shear span to the overall depth of the member cross-section, location and dimensions of the opening. Test results showed that there was a decrease in the load carrying capacity of deep bea

... Show More
View Publication
Crossref (7)
Crossref
Publication Date
Thu Nov 29 2018
Journal Name
Civil Engineering Journal
Strength and Serviceability of Reinforced Concrete Deep Beams with Large Web Openings Created in Shear Spans
...Show More Authors

Deep beams are used in wide construction fields such as water tanks, foundations, and girders in multi-story buildings to provide certain areas free of columns. In practice it is quite often occurring to create web opening in deep beams to supply convenient passage of ventilation ducts, cable channels, gas and water pipes. Experimental studies of ten 10 deep beams were carried out, where two of them are control specimens without openings and eight with large web openings in the shear spans. The variables that have been adopted are the ratio of the shear span to the overall depth of the member cross-section, location and dimensions of the opening. Test results showed that there was a decrease in the load carrying capacity of deep bea

... Show More
Crossref (7)
Clarivate Crossref
Publication Date
Fri Sep 15 2017
Journal Name
Journal Of Baghdad College Of Dentistry
Evaluate the effect of surface treatments on shear bond strength between lithium disilicate ceramic and dentin.
...Show More Authors

Purpose: To evaluate the effect of different surface treatments on shear bond strength between dentin and IPS e.max lithium disilicate glass-ceramic. Materials and Methods: Eighteen extracted third molars were embeded in epoxy resin. The tooth was sectioned vertically in mesiodistal direction using a low speed hard tissue microtome. The buccal and lingual surfaces of each section were ground flat using 600 grit Silicone carbide paper. Eighteen ceramic discs consisted of lithium disilicate glass-ceramic were prepared with a diameter of 4.7mm and height of 2.2mm. The discs were divided in two groups (n=10): (1) IPS e.max treated with hydrofluoric acid and Monobond Plus (MBP) and (2) IPS e.max treated with Monobond Etch &Prime (MBEP). The toot

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Feb 28 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Use Of Artificial Neural Networks In Developing The Role Of Auditor In Discovering Fundamental Errors: An Applied Research In General Company for Electrical Industries and Nasr General Company for Mechanical Industries
...Show More Authors

Artificial neural networks usage, as a developed technique, increased in many fields such as Auditing business. Contemporary auditor should cope with the challenges of the technology evolution in the business environment by using computerized techniques such as Artificial neural networks, This research is the first work made in the field of modern techniques of the artificial neural networks in the field of auditing; it is made by using thesample of neural networks as a sample of the artificial multi-layer Back Propagation neural networks in the field of detecting fundamental mistakes of the financial statements when making auditing. The research objectives at offering a methodology for the application of theartificial neural networks wi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed May 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Comparison between Radial Basis Function and Wavelet Basis Functions Neural Networks
...Show More Authors

      In this paper we study and design two feed forward neural networks. The first approach uses radial basis function network and second approach uses wavelet basis function network to approximate the mapping from the input to the output space. The trained networks are then used in an conjugate gradient algorithm to estimate the output. These neural networks are then applied to solve differential equation. Results of applying these algorithms to several examples are presented

View Publication Preview PDF
Publication Date
Fri Jun 01 2007
Journal Name
Journal Of Al-nahrain University Science
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS
...Show More Authors

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Computational Intelligence Systems
Evolutionary Feature Optimization for Plant Leaf Disease Detection by Deep Neural Networks
...Show More Authors

View Publication
Scopus (46)
Crossref (45)
Scopus Clarivate Crossref
Publication Date
Fri Dec 23 2011
Journal Name
International Journal Of The Physical Sciences
Fast prediction of power transfer stability index based on radial basis function neural network
...Show More Authors

View Publication
Scopus (16)
Crossref (4)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Artificial neural network model for predicting the desulfurization efficiency of Al-Ahdab crude oil
...Show More Authors

View Publication Preview PDF
Scopus (9)
Crossref (9)
Scopus Crossref